Skip to main content
Log in

Higher order numerical methods for solving fractional differential equations

  • Published:
BIT Numerical Mathematics Aims and scope Submit manuscript

Abstract

In this paper we introduce higher order numerical methods for solving fractional differential equations. We use two approaches to this problem. The first approach is based on a direct discretisation of the fractional differential operator: we obtain a numerical method for solving a linear fractional differential equation with order 0<α<1. The order of convergence of the numerical method is O(h 3−α). Our second approach is based on discretisation of the integral form of the fractional differential equation and we obtain a fractional Adams-type method for a nonlinear fractional differential equation of any order α>0. The order of convergence of the numerical method is O(h 3) for α≥1 and O(h 1+2α) for 0<α≤1 for sufficiently smooth solutions. Numerical examples are given to show that the numerical results are consistent with the theoretical results.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Blank, L.: Numerical treatment of differential equations of fractional order. Nonlinear World 4, 473–491 (1997)

    MATH  MathSciNet  Google Scholar 

  2. Cao, J., Xu, C.: A high order schema for the numerical solution of the fractional ordinary differential equations. J. Comput. Phys. 238, 154–168 (2013)

    Article  MATH  MathSciNet  Google Scholar 

  3. Deng, W.H.: Numerical algorithm for the time fractional Fokker-Planck equation. J. Comput. Phys. 227, 1510–1522 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  4. Deng, W.H.: Short memory principle and a predictor-corrector approach for fractional differential equations. J. Comput. Appl. Math. 206, 1768–1777 (2007)

    Google Scholar 

  5. Deng, W.H., Li, C.: Numerical schemes for fractional ordinary differential equations. In: Miidla, P. (ed.) Numerical Modelling, pp. 355–374. InTech, Rijeka (2012). Chap. 16

    Google Scholar 

  6. Diethelm, K.: Generalized compound quadrature formulae for finite-part integrals. IMA J. Numer. Anal. 17, 479–493 (1997)

    Article  MATH  MathSciNet  Google Scholar 

  7. Diethelm, K.: An algorithm for the numerical solution of differential equations of fractional order. Electron. Trans. Numer. Anal. 5, 1–6 (1997)

    MATH  MathSciNet  Google Scholar 

  8. Diethelm, K.: The Analysis of Fractional Differential Equations, An Application-Oriented Exposition Using Differential Operators of Caputo Type. Lecture Notes in Mathematics, vol. 2004. Springer, Berlin (2010)

    MATH  Google Scholar 

  9. Diethelm, K., Ford, N.J.: Analysis of fractional differential equations. J. Math. Anal. Appl. 265, 229–248 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  10. Diethelm, K., Luchko, Y.: Numerical solution of linear multi-term initial value problems of fractional order. J. Comput. Anal. Appl. 6, 243–263 (2004)

    MATH  MathSciNet  Google Scholar 

  11. Diethelm, K., Walz, G.: Numerical solution of fractional order differential equations by extrapolation. Numer. Algorithms 16, 231–253 (1997)

    Article  MATH  MathSciNet  Google Scholar 

  12. Diethelm, K., Ford, N.J., Freed, A.D.: A predictor-corrector approach for the numerical solution of fractional differential equations. Nonlinear Dyn. 29, 3–22 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  13. Diethelm, K., Ford, N.J., Freed, A.D.: Detailed error analysis for a fractional Adams method. Numer. Algorithms 36, 31–52 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  14. Ford, N.J., Simpson, A.C.: The numerical solution of fractional differential equations: speed versus accuracy. Numer. Algorithms 26, 333–346 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  15. Ford, N.J., Morgado, M.L., Rebelo, M.: Nonpolynomial collocation approximation of solutions to fractional differential equations. Fract. Calc. Appl. Anal. 18, 874–891 (2013)

    Article  MathSciNet  Google Scholar 

  16. Gorenflo, R.: Fractional Calculus: Some Numerical Methods. CISM Lecture Notes (1996)

    Google Scholar 

  17. Lubich, C.: Convolution quadrature and discretized operational calculus II. Numer. Math. 52, 413–425 (1988)

    Article  MATH  MathSciNet  Google Scholar 

  18. Lyness, J.N.: Finite-part integration and the Euler-MacLaurin expansion. In: Zahar, R.V.M. (ed.) Approximation and Computation. Internat. Ser. Numer. Math., vol. 119, pp. 397–407. Birkhäuser, Basel (1994)

    Google Scholar 

  19. Podlubny, I.: Fractional Differential Equations. Academic Press, San Diego (1999)

    MATH  Google Scholar 

  20. Zhao, L., Deng, W.H.: Jacobi-predictor-corrector approach for the fractional ordinary differential equations (2012). arXiv:1201.5952v2

Download references

Acknowledgements

The authors wish to thank Kai Diethelm for reading the first version of this paper and making useful suggestions. The authors also wish to thank the anonymous reviewers of this paper for their careful reading and useful comments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yubin Yan.

Additional information

Communicated by Jan Hesthaven.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yan, Y., Pal, K. & Ford, N.J. Higher order numerical methods for solving fractional differential equations. Bit Numer Math 54, 555–584 (2014). https://doi.org/10.1007/s10543-013-0443-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10543-013-0443-3

Keywords

Mathematics Subject Classification (2010)

Navigation