Skip to main content
Log in

The origins of causal cognition in early hominins

  • Published:
Biology & Philosophy Aims and scope Submit manuscript

Abstract

Studies of primate cognition have conclusively shown that humans and apes share a range of basic cognitive abilities. As a corollary, these same studies have also focussed attention on what makes humans unique, and on when and how specifically human cognitive skills evolved. There is widespread agreement that a major distinguishing feature of the human mind is its capacity for causal reasoning. This paper argues that causal cognition originated with the use made of indirect natural signs by early hominins forced to adapt to variable late Miocene and early Pliocene environments; that early hominins evolved an innate tendency to search for such signs and infer their causes; that causal inference required the existence of incipient working memory; and that causal relationships were stored through being integrated into spatial maps to create increasingly complex causal models of the world.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Notes

  1. Perceptual images can be described as representations, but I reserve the term for their cognitive counterparts because they are not automatic responses bound, as perceptual images are, to external stimuli. Moreover cognitive representations are very often composite, constructed in and influenced by the organising structure of memory, which is not the case for direct experience of sensory imagery.

  2. Evolution of ‘enhanced working memory’ may well be what gave Homo sapiens the edge over the Neandertals by allowing more stored knowledge to be accessed and held in mind, so enabling complex problems to be considered in innovatory ways (Wynn and Coolidge 2004).

  3. Support for the significance of sociality for the evolution of intelligence comes also from studies of other social primates (Kamil 2004).

  4. Note that the structural differentiation of memory into semantic and episodic components was a later development dependent on the evolution of language.

  5. For which both fine muscular coordination (the effector subsystem) and a ‘spatial-praxic’ subsystem to permit visual-spatial mental manipulation would have been necessary (Welshon 2010).

  6. Empirical studies indicate that the brain/mind imposes a hierarchical/recursive structure even when processing descriptions of everyday events (Mesoudi and Whiten 2004).

References

  • Ambrose SH (2001) Paleolithic technology and human evolution. Science 291:1748–1753

    Article  Google Scholar 

  • Astington JW, Dack LA (2008) Theory of mind. In: Haith MM, Benson JB (eds) Encyclopedia of infant and early childhood development, vol 3. Academic Press, San Diego, pp 343–356

    Chapter  Google Scholar 

  • Baddeley A (2012) Working memory: theories, models, and controversies. Annu Rev Psychol 63:1–29

    Article  Google Scholar 

  • Balter M (2008) Why we’re different: probing the gap between apes and humans. Science 319:404–405

    Article  Google Scholar 

  • Baumgartner M (2008) Regularity theories reassessed. Philosophia 36:327–354

    Article  Google Scholar 

  • Behrensmeyer AK (2006) Climate change and human evolution. Science 311:476–478

    Article  Google Scholar 

  • Behrensmeyer AK, Reed KE (2013) Reconstructing the habitats of Australopithecus: paleoenvironments, site taphonomy, and faunas. In: Fleagle JG, Leakey RE, Reed KE (eds) The paleobiology of Australopithecus. Springer, Dordrecht, pp 41–60

    Chapter  Google Scholar 

  • Bickerton D (1990) Language and species. Chicago University Press, Chicago

    Google Scholar 

  • Brodin A (2010) The history of scatter hoarding studies. Philos Trans R Soc B 365:869–881

    Article  Google Scholar 

  • Calvin WH (2004) A brief history of the mind: from apes to intellect and beyond. Oxford University Press, Oxford

    Google Scholar 

  • Calvin WH, Bickerton D (2000) Lingua ex machina: reconciling Darwin and Chomsky with the human brain. MIT Press, Cambridge

    Google Scholar 

  • Cheney DL, Seyfarth RM (1990) How monkeys see the world. Chicago University Press, Chicago

    Google Scholar 

  • Coolidge FL, Wynn T (2009) The rise of Homo sapiens: The evolution of modern thinking. Wiley-Blackwell, Chichester

    Book  Google Scholar 

  • Corballis MC (2011) The recursive mind: the origins of human language, thought, and civilization. Princeton University Press, Princeton

    Google Scholar 

  • Corrigan R, Denton P (1996) Causal understanding as a developmental primitive. Dev Rev 16:162–202

    Article  Google Scholar 

  • Csibra G, Gergely G (2011) Natural pedagogy as evolutionary adaptation. Philos Trans R Soc B 366:1148–1157

    Article  Google Scholar 

  • Darwin C (1871) The descent of man, and selection in relation to sex. John Murray, London

    Book  Google Scholar 

  • Dunbar R (1996) Grooming, gossip, and the evolution of language. Harvard University Press, Cambridge

    Google Scholar 

  • Dunbar R (1998) The social brain hypothesis. Evol Anthropol 6:178–190

    Article  Google Scholar 

  • Elton S (2008) The environmental context of human evolutionary history in Eurasia and Africa. J Anat 212:377–393

    Article  Google Scholar 

  • Fugelsang JA, Dunbar KN (2005) Brain-based mechanisms underlying complex causal thinking. Neuropsychology 43:1204–1213

    Article  Google Scholar 

  • Gärdenfors P (2003) How homo became sapiens: on the evolution of thinking. Oxford University Press, Oxford

    Google Scholar 

  • Garfield JL, Peterson CC et al (2001) Social cognition, language acquisition and the development of the theory of mind. Mind Lang 16(5):494–541

    Article  Google Scholar 

  • Gelman SA (2009) Learning from others: children’s construction of concepts. Annu Rev Psychol 60:115–140

    Article  Google Scholar 

  • Gopnik A (2000) Explanation as orgasm and the drive for causal knowledge: the function, evolution, and phenomenology of the theory formation system. In: Keil FC, Wilson RA (eds) Explanation and cognition. MIT Press, Cambridge, pp 299–323

    Google Scholar 

  • Gopnik A, Meltzoff AN (1997) Words, thoughts and theories. MIT Press, Cambridge

    Google Scholar 

  • Gopnik A, Glymour C et al (2004) A theory of causal learning in children: causal maps and Bayes nets. Psychol Rev 111:3–32

    Article  Google Scholar 

  • Gottlieb J, Oudeyer P-Y et al (2013) Information-seeking, curiosity, and attention: computational and neural mechanisms. Trends Cogn Sci 17:585–593

    Article  Google Scholar 

  • Grove M (2011) Change and variability in Plio-Pleistocene climates: modelling the hominin response. J Archaeol Sci 38:3038–3047

    Article  Google Scholar 

  • Hart D, Sussman RA (2005) Man the hunted: primates, predators, and human evolution. Westview Press, Cambridge

    Google Scholar 

  • Herrmann E, Call J et al (2007) Humans have evolved specialized skills of social cognition: the cultural intelligence hypothesis. Science 317:1360–1366

    Article  Google Scholar 

  • Heyes C (2012) New thinking: the evolution of human cognition. Philos Trans R Soc B 367:2091–2096

    Article  Google Scholar 

  • Hill K (1982) Hunting and human evolution. J Hum Evol 11:521–544

    Article  Google Scholar 

  • Holyoak KJ, Cheng PW (2011) Causal learning and inference as a rational process: the new synthesis. Annu Rev Psychol 62:135–163

    Article  Google Scholar 

  • Humphrey N (1993) A history of the mind. Vintage, London

    Google Scholar 

  • Humphrey N (2002) The inner eye. Oxford University Press, Oxford

    Google Scholar 

  • Jacobs BF (2004) Palaeobotanical studies from tropical Africa: relevance to the evolution of forest, woodland and savannah biomes. Philos Trans R Soc B 359:1573–1583

    Article  Google Scholar 

  • Kamil AC (2004) Sociality and the evolution of intelligence. Trends Cogn Sci 8(5):196–199

    Article  Google Scholar 

  • Langergraber KE, Prüfer K et al (2012) Generation times in wild chimpanzees and gorillas suggest earlier divergence times in great ape and human evolution. Proc Natl Acad Sci 109(39):15716–15721

    Article  Google Scholar 

  • Liebenberg L (2008) The relevance of persistence tracking to human evolution. J Hum Evol 55:1156–1159

    Article  Google Scholar 

  • Lovejoy CO (2009) Reexamining human origins in light of Ardipithecus ramidus. Science 326:74e71–74e78

    Google Scholar 

  • Lyons DE, Young AG, Keil FC (2007) The hidden structure of overimitation. Proc Natl Acad Sci USA 104:19751–19756

  • Mandler JM (2007) On the origins of the conceptual system. Am Psychol 62(8):741–751

    Article  Google Scholar 

  • Mandler JM (2010) The spatial foundations of the conceptual system. Lang Cogn 2(1):21–44

    Article  Google Scholar 

  • McGrew WC (2010) In search of the last common ancestor: new findings on wild chimpanzees. Philos Trans R Soc B 365:3267–3276

  • McGrew WC (2013) Is primate tool use special? Chimpanzee and New Caledonian crow compared. Philos Trans R Soc B 368:20120422

    Article  Google Scholar 

  • Mesoudi A, Whiten A (2004) The hierarchical transformation of evert knowledge in human cultural transmission. J Cogn Cult 4(1):1–24

    Article  Google Scholar 

  • Meulman EJM, Sanz CM et al (2012) The role of terrestriality in promoting primate technology. Evol Anthropol 21:58–68

    Article  Google Scholar 

  • Newman GE, Choi H et al (2008) The origins of causal perception: evidence from postdictive processing in infancy. Cogn Psychol 57:262–291

    Article  Google Scholar 

  • Osvath M, Gärdenfors P (2005) Oldowan culture and the evolution of anticipatory cognition. In: Lund University Cognitive Studies, vol 126

  • Penn DC, Povinelli DJ (2007) Causal cognition in human and nonhuman animals: a comparative, critical review. Annu Rev Psychol 58:97–118

    Article  Google Scholar 

  • Penn DC, Holyoak KJ et al (2008) Darwin’s mistake: explaining the discontinuity between human and non-human minds. Behav Brain Sci 31:109–178

    Google Scholar 

  • Portugali J (1996) The construction of cognitive maps. Kluwer Academic Publishers, Dordrecht

    Book  Google Scholar 

  • Postle BR (2006) Working memory as an emergent property of the mind and brain. Neuroscience 139:23–38

    Article  Google Scholar 

  • Potts R (1991) Why the Oldowan? Plio-Pleistocene toolmaking and the transport of resources. J Anthropol Res 47(2):153–176

    Google Scholar 

  • Povinelli DJ, Bering JM (2002) The mentality of apes revisited. Curr Dir Psychol Sci 20:115–119

    Article  Google Scholar 

  • Povinelli DJ, Preuss TM (1995) Theory of mind: evolutionary history of a cognitive specialization. Trends Neurosci 18(9):418–424

    Article  Google Scholar 

  • Premack D (2007) Human and animal cognition: continuity and discontinuity. Proc Natl Acad Sci USA 104:13861–13867

    Article  Google Scholar 

  • Read DW (2008) Working memory: a cognitive limit to non-human primate recursive thinking prior to hominid evolution. Evol Psychol 6:676–714

    Google Scholar 

  • Reader SM, Laland KN (2002) Social intelligence, innovation, and enhanced brain size in primates. PNAS 99(7):4436–4441

    Article  Google Scholar 

  • Rekers Y, Haun DBM et al (2011) Children, but not chimpanzees, prefer to collaborate. Curr Biol 21:1756–1758

    Article  Google Scholar 

  • Reynolds SC, Bailey GN et al (2011) Landscapes and their relation to hominin habitats: case studies from Australopithecus sites in eastern and southern Africa. J Hum Evol 60:281–298

    Article  Google Scholar 

  • Schulz LE, Gopnik A et al (2007) Preschool children learn about causal structure from conditional interventions. Dev Sci 10(3):322–332

    Article  Google Scholar 

  • Seyfarth RM, Cheney DL, Marler P (1980) Monkey responses to three different alarm calls: evidence of predator classification and semantic communication. Science 210(4471):801–803

    Article  Google Scholar 

  • Shaw-Williams K (2014) The social trackways theory of the evolution of human cognition. Biol Theory 9:16–26

    Article  Google Scholar 

  • Shettleworth SJ (2012) Modularity, comparative cognition and human uniqueness. Philos Trans R Soc B 367:2794–2802

    Article  Google Scholar 

  • Sobel DM, Kirkham NZ (2006) Blickets and babies: the development of causal reasoning in toddlers and infants. Dev Psychol 42:1103–1115

    Article  Google Scholar 

  • Solomon KO, Medin DL et al (1999) Concepts do more than categorize. Trends Cogn Sci 3(3):99–105

    Article  Google Scholar 

  • Sperber D, Hirschfeld LA (2004) The cognitive foundations of cultural stability and diversity. Trends Cogn Sci 8:40–46

    Article  Google Scholar 

  • Sperber D, Premack D et al (1995) Causal cognition: a multi-disciplinary approach. Clarendon Press, Oxford

    Google Scholar 

  • Steiper ME, Young NM (2006) Primate molecular divergence dates. Mol Phylogenet Evol 41:384–394

    Article  Google Scholar 

  • Sterelny K (2003) Thought in a hostile world: the evolution of human cognition. Blackwell, Malden, MA

  • Sterelny K (2007) Social intelligence, human intelligence and niche construction. Philos Trans R Soc B 362:719–730

    Article  Google Scholar 

  • Sterelny K (2012) The evolved apprentice: how evolution made humans unique. MIT Press, Cambridge

    Book  Google Scholar 

  • Stout D (2011) Stone toolmaking and the evolution of human culture and cognition. Philos Trans R Soc B 366:1050–1059

    Article  Google Scholar 

  • Suddendorf T, Corballis MC (2007) The evolution of foresight: what is mental time travel, and is it unique to humans? Behav Brain Sci 30:299–351

    Google Scholar 

  • Suddendorf T, Whiten A (2003) Reinterpreting the mentality of apes. In: Sterelny K, Fitness J (eds) From mating to mentality: evaluating evolutionary psychology. Psychology Press, New York, pp 173–196

    Google Scholar 

  • Suddendorf T, Addis DR et al (2009) Mental time travel and the shaping of the human mind. Philos Trans R Soc B 364:1317–1324

    Article  Google Scholar 

  • Tolman EC (1948) Cognitive maps in rats and men. Psychol Rev 55(4):189–208

  • Tomasello M, Carpenter M et al (2005) Understanding and sharing intentions: the origins of cultural cognition. Behav Brain Sci 28:675–735

    Google Scholar 

  • Tsien JZ (2007) The memory code. Sci Am 297(1):34–41

    Article  Google Scholar 

  • Vaesen K (2012) The cognitive bases of human tool use. Behav Brain Sci 35:203–262

    Article  Google Scholar 

  • van Horik J, Emery NJ (2011) Evolution of cognition. WIREs Cogn Sci 2:621–633

    Article  Google Scholar 

  • Waldmann MR, Hagmayer Y et al (2006) Beyond the information given: causal modeles in learning and reasoning. Curr Dir Psychol Sci 15(6):307–311

    Article  Google Scholar 

  • Welshon R (2010) Working memory, neuroanatomy, and archaeology. Curr Anthropol 51(supplement 1):S191–S199

    Article  Google Scholar 

  • White TD, WoldeGabriel G et al (2006) Asa Issie, Aramis and the origin of Australopithecus. Nature 440:883–889

    Article  Google Scholar 

  • White TD, Asfaw B et al (2009) Ardipithecus ramidus and the paleobiology of early hominids. Science 326(64):75–86

    Google Scholar 

  • Whiten A (2005) The second inheritance system of chimpanzees and humans. Nature 437(September):52–55

    Article  Google Scholar 

  • Whiten A (2011) The scope of culture in chimpanzees, humans and ancestral apes. Philos Trans R Soc B 366:997–1007

    Article  Google Scholar 

  • Wolpert L (2003) Causal belief and the origins of technology. Philos Trans R Soc Lond A 361:1709–1719

    Article  Google Scholar 

  • Wolpert L (2007) Causal belief makes us human. In: Pasternak C (ed) What makes us human?. Oneworld, Oxford, pp 164–181

    Google Scholar 

  • Wood B, Harrison T (2011) The evolutionary context of the first hominins. Nature 470:347–352

    Article  Google Scholar 

  • Wynn T, Coolidge FL (2004) The expert Neandertal mind. J Hum Evol 46:467–487

    Article  Google Scholar 

  • Zihlman A, Tanner N (1978) Gathering and hominid adaptation. In: Tiger L, Fowler HT (eds) Female hierarchies. Beresford Book Service, Chicago, pp 163–194

    Google Scholar 

  • Zuberbühler K, Jenny D (2002) Leopard predation and primate evolution. J Hum Evol 43:873–886

    Article  Google Scholar 

Download references

Acknowledgments

I should like to record my thanks to Kim Sterelny and an anonymous reviewer for their criticisms of an earlier draft of this paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Martin Stuart-Fox.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Stuart-Fox, M. The origins of causal cognition in early hominins. Biol Philos 30, 247–266 (2015). https://doi.org/10.1007/s10539-014-9462-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10539-014-9462-y

Keywords

Navigation