Skip to main content

Advertisement

Log in

Biocompatibility of NiTi alloys in the cell behaviour

  • Published:
BioMetals Aims and scope Submit manuscript

Abstract

Metallic biomaterial alloys composed of nickel and titanium have unique thermal shape memory, superelastic, and high damping properties, which are widely used in the medicine. The major parameter evaluated in the studies regarding the behaviour of the material in the contact with organism or cells is biocompatibility. The aim of the studies is to clarify the differences in the proliferation, growth, and morphology especially in the cell cultures. The cytotoxicity is affected among other by release of the metal ions in the presence of the metal alloy, which is further dependent on the possible treatments of the material and the corrosive properties. To evaluate the cytotoxicity, wide range of tests including the Sulforhodamine B assay and MTT tests, expression profiles, cell survival tests such as apoptotic test are used. The review compares the cell behaviour in contact with the material alloys composed of nickel and titanium with respect to different materials composition and different surface treatment that affects the ion release. Even though the results published so far are controversial, almost all data suggest sufficient biocompatibility in medical use.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

ASCs:

Adipose stem cells

HUVECs:

Human umbilical vein endothelial cells

LDH test:

Lactatodeshidrogenasa test

NiTi:

Nitinol

NiTiCu:

Nitinol-copper

PBS:

Phosphate buffered saline

ROS-17:

Rat osteosarcoma

SRB:

Sulforhodamine B assay

Stst:

Stainless steel

TiN:

Titaniumnitride

TiO2 :

Titanium dioxide

VSMCs:

Vascular smooth muscle cells

XPS:

X-ray photoelectron spectroscopy

References

  • Armitage DA, Parker TL, Grant DM (2003) Biocompatibility and hemocompatibility of surface-modified NiTi alloys. J Biomed Mater Res A 66:129–137. doi:10.1002/jbm.a.10549

    Article  PubMed  Google Scholar 

  • Balla VK, Banerjee S, Bose S, Bandyopadhyay A (2010) Direct laser processing of a tantalum coating on titanium for bone replacement structures. Acta Biomater 6:2329–2334. doi:10.1016/j.actbio.2009.11.021

    Article  CAS  PubMed  Google Scholar 

  • Banasiak D, Barnetson AR, Odell RA et al (1999) Comparison between the clonogenic, MTT, and SRB assays for determining radiosensitivity in a panel of human bladder cancer cell lines and a ureteral cell line. Radiat Oncol Investig 7:77–85

    Article  CAS  PubMed  Google Scholar 

  • Bensimon J, Rosenfield C (1974) Influence of du sulfate de nickel sur la croissance de deux lignees lymphoblastoides humaines D’origine normale et Leucemique. CR Acad Sci Hebd Seances Acad Sci D 278:345–348

    CAS  Google Scholar 

  • Bernard SA, Balla VK, Davies NM et al (2011) Bone cell–materials interactions and Ni ion release of anodized equiatomic NiTi alloy. Acta Biomater 7:1902–1912. doi:10.1016/j.actbio.2011.01.004

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bishara SE, Barrett RD, Selim MI (1993) Biodegradation of orthodontic appliances. Part II. changes in the blood level of nickel. Am J Orthod Dentofacial Orthop 103:115–119

    Article  CAS  PubMed  Google Scholar 

  • Bogdanski D, Köller M, Müller D et al (2002) Easy assessment of the biocompatibility of Ni–Ti alloys by in vitro cell culture experiments on a functionally graded Ni–NiTi–Ti material. Biomaterials 23:4549–4555

    Article  CAS  PubMed  Google Scholar 

  • Carroll W, Kelly M (2003) Corrosion behavior of nitinol wires in body fluid environments. J Biomed Mater Res A 67:1123–1130

    Article  CAS  PubMed  Google Scholar 

  • Chrzanowski W, Neel EAA, Armitage DA et al (2010) In vitro studies on the influence of surface modification of Ni–Ti alloy on human bone cells. J Biomed Mater Res A 93A:1596–1608. doi:10.1002/jbm.a.32646

    CAS  Google Scholar 

  • Cisse O, Savadogo O, Wu M, Yahia L (2002) Effect of surface treatment of NiTi alloy on its corrosion behavior in Hanks’ solution. J Biomed Mater Res 61:339–345

    Article  CAS  PubMed  Google Scholar 

  • Clarke B, Carroll W, Rochev Y et al (2006) Influence of Nitinol wire surface treatment on oxide thickness and composition and its subsequent effect on corrosion resistance and nickel ion release. J Biomed Mater Res A 79A:61–70. doi:10.1002/jbm.a.30720

    Article  CAS  Google Scholar 

  • Craig R, Hanks C (1990) Cytotoxicity of experimental casting alloys evaluated by cell culture tests. J Dent Res 69:1539–1542

    Article  CAS  PubMed  Google Scholar 

  • Das K, Bose S, Bandyopadhyay A (2007) Surface modifications and cell-materials interactions with anodized Ti. Acta Biomater 3:573–585. doi:10.1016/j.actbio.2006.12.003

    Article  CAS  PubMed  Google Scholar 

  • Elmore S (2007) Apoptosis: a review of programmed cell death. Toxicol Pathol 35:495–516. doi:10.1080/01926230701320337

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Es-Souni M, Es-Souni M, Brandies HF (2001) On the transformation behaviour, mechanical properties and biocompatibility of two NiTi-based shape memory alloys: NiTi42 and NiTi42Cu7. Biomaterials 22:2153–2161. doi:10.1016/S0142-9612(00)00406-3

    Article  CAS  PubMed  Google Scholar 

  • Evans E, Thomas I (1986) The in vitro toxicity of cobalt-chrome-molybdenum alloy and its constituent metals. Biomaterials 7:25–29

    Article  CAS  PubMed  Google Scholar 

  • Firstov G, Vitchev R, Kumar H et al (2002) Surface oxidation of NiTi shape memory alloy. Biomaterials 23:4863–4871

    Article  CAS  PubMed  Google Scholar 

  • Gill P, Musaramthota V, Munroe N et al (2015) Surface modification of Ni-Ti alloys for stent application after magnetoelectropolishing. Mater Sci Eng C Mater Biol Appl 50:37–44. doi:10.1016/j.msec.2015.01.009

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gristina AG (1987) Biomaterial-centered infection: microbial adhesion versus tissue integration. Science 237:1588–1595

    Article  CAS  PubMed  Google Scholar 

  • Haider W, Munroe N, Tek V et al (2011) Cytotoxicity of metal ions released from nitinol alloys on endothelial cells. J Mater Eng Perform 20:816–818. doi:10.1007/s11665-011-9884-5

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hanawa T (2004) Metal ion release from metal implants. Mater Sci Eng C 24:745–752

    Article  Google Scholar 

  • Hillen U, Haude M, Erbel R, Goos M (2002) Evaluation of metal allergies in patients with coronary stents. Contact Dermat 47:353–356

    Article  CAS  Google Scholar 

  • Jia W, Beatty MW, Reinhardt RA et al (1999) Nickel release from orthodontic arch wires and cellular immune response to various nickel concentrations. J Biomed Mater Res 48:488–495

    Article  CAS  PubMed  Google Scholar 

  • Kapanen A, Ilvesaro J, Danilov A et al (2002) Behaviour of nitinol in osteoblast-like ROS-17 cell cultures. Biomaterials 23:645–650

    Article  CAS  PubMed  Google Scholar 

  • Kawahara H (1983) Cellular responses to implant materials: biological, physical and chemical factors. Int Dent J 33:350–375

    CAS  PubMed  Google Scholar 

  • Ke Q, Davidson T, Kluz T et al (2007) Fluorescent tracking of nickel ions in human cultured cells. Toxicol Appl Pharmacol 219:18–23

    Article  CAS  PubMed  Google Scholar 

  • Kobayashi S, Ohgoe Y, Ozeki K et al (2005) Diamond-like carbon coatings on orthodontic archwires. Diam Relat Mater 14:1094–1097

    Article  CAS  Google Scholar 

  • Köster R, Vieluf D, Kiehn M et al (2000) Nickel and molybdenum contact allergies in patients with coronary in-stent restenosis. The Lancet 356:1895–1897

    Article  Google Scholar 

  • Li Q, Suen T-C, Sun H et al (2009) Nickel compounds induce apoptosis in human bronchial epithelial Beas-2B cells by activation of c-Myc through ERK pathway. Toxicol Appl Pharmacol 235:191–198

    Article  CAS  PubMed  Google Scholar 

  • Lifeng Z, Yan H, Dayun Y et al (2011) The underlying biological mechanisms of biocompatibility differences between bare and TiN-coated NiTi alloys. Biomed Mater Bristol Engl 6:025012. doi:10.1088/1748-6041/6/2/025012

    Article  Google Scholar 

  • Lü X, Bao X, Huang Y et al (2009) Mechanisms of cytotoxicity of nickel ions based on gene expression profiles. Biomaterials 30:141–148. doi:10.1016/j.biomaterials.2008.09.011

    Article  PubMed  Google Scholar 

  • Manceur A, Chellat F, Merhi Y et al (2003) In vitro cytotoxicity evaluation of a 50.8% NiTi single crystal. J Biomed Mater Res A 67:641–646. doi:10.1002/jbm.a.10134

    Article  PubMed  Google Scholar 

  • O’Brien B, Carroll W, Kelly M (2002) Passivation of nitinol wire for vascular implants—a demonstration of the benefits. Biomaterials 23:1739–1748

    Article  PubMed  Google Scholar 

  • Okazaki Y, Gotoh E (2008) Metal release from stainless steel, Co–Cr–Mo–Ni–Fe and Ni–Ti alloys in vascular implants. Corros Sci 50:3429–3438

    Article  CAS  Google Scholar 

  • Pulletikurthi C, Munroe N, Gill P et al (2011) Cytotoxicity of Ni from surface-treated porous nitinol (PNT) on osteoblast cells. J Mater Eng Perform 20:824–829. doi:10.1007/s11665-011-9930-3

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Putters J, Sukul K, De Zeeuw G et al (1992) Comparative cell culture effects of shape memory metal (Nitinol®), nickel and titanium: a biocompatibility estimation. Eur Surg Res 24:378–382

    Article  CAS  PubMed  Google Scholar 

  • Rae T (1975) A study on the effects of particulate metals of orthopaedic interest on murine macrophages in vitro. J Bone Joint Surg Br 57:444–450

    CAS  PubMed  Google Scholar 

  • Ries MW, Kampmann C, Rupprecht H-J et al (2003) Nickel release after implantation of the Amplatzer occluder. Am Heart J 145:737–741

    Article  CAS  PubMed  Google Scholar 

  • Rokicki R (2013) Method for surface inclusions detection in nitinol which are primary corrosion and fatigue initiation sites and indicators of overall quality of nitinol material. U.S. Patent 8,377,237

  • Rondelli G, Vicentini B (1999) Localized corrosion behaviour in simulated human body fluids of commercial Ni–Ti orthodontic wires. Biomaterials 20:785–792

    Article  CAS  PubMed  Google Scholar 

  • Roy M, Balla VK, Bose S, Bandyopadhyay A (2010) Comparison of tantalum and hydroxyapatite coatings on titanium for applications in load bearing implants. Adv Eng Mater 12:B637–B641. doi:10.1002/adem.201080017

    Article  Google Scholar 

  • Ryhänen J (1999) Biocompatibility evaluation of nickel-titanium shape memory metal alloy. University of Oulu, Oulu

    Google Scholar 

  • Ryhänen J, Niemi E, Serlo W et al (1997) Biocompatibility of nickel-titanium shape memory metal and its corrosion behavior in human cell cultures. J Biomed Mater Res 35:451–457. doi:10.1002/(SICI)1097-4636(19970615)35:4<451:AID-JBM5>3.0.CO;2-G

    Article  PubMed  Google Scholar 

  • Shabalovskaya S, Rondelli G, Anderegg J et al (2004) Comparative corrosion performance of black oxide, sandblasted, and fine-drawn nitinol wires in potentiodynamic and potentiostatic tests: effects of chemical etching and electropolishing. J Biomed Mater Res B Appl Biomater 69B:223–231. doi:10.1002/jbm.b.30006

    Article  CAS  Google Scholar 

  • Shabalovskaya SA, Tian H, Anderegg JW et al (2009) The influence of surface oxides on the distribution and release of nickel from Nitinol wires. Biomaterials 30:468–477

    Article  CAS  PubMed  Google Scholar 

  • Shih C-C, Lin S-J, Chen Y-L et al (2000) The cytotoxicity of corrosion products of nitinol stent wire on cultured smooth muscle cells. J Biomed Mater Res 52:395–403. doi:10.1002/1097-4636(200011)52:2<395:AID-JBM21>3.0.CO;2-B

    Article  CAS  PubMed  Google Scholar 

  • Strauß S, Dudziak S, Hagemann R et al (2012) Induction of osteogenic differentiation of adipose derived stem cells by microstructured nitinol actuator-mediated mechanical stress. PLoS ONE 7:e51264. doi:10.1371/journal.pone.0051264

    Article  PubMed  PubMed Central  Google Scholar 

  • Sui J, Cai W (2006) Effect of diamond-like carbon (DLC) on the properties of the NiTi alloys. Diam Relat Mater 15:1720–1726

    Article  CAS  Google Scholar 

  • Sunderman FW Jr (1978) Carcinogenic effects of metals. Fed Proc 37(1):40–46

    CAS  PubMed  Google Scholar 

  • Swierenga S, Basrur P (1968) Effect of nickel on cultured rat embryo muscle cells. Lab Investig J Tech Methods Pathol 19:663–674

    CAS  Google Scholar 

  • Van Humbeeck J, Stalmans R, Besselink P (1998) Shape memory alloys., Biomaterials Science and EngineeringWiley, New York, pp 73–100

    Google Scholar 

  • Wataha JC, Hanks C, Craig RG (1991) The in vitro effects of metal cations on eukaryotic cell metabolism. J Biomed Mater Res 25:1133–1149

    Article  CAS  PubMed  Google Scholar 

  • Wataha JC, Hanks CT, Sun Z (1994) Effect of cell line on in vitro metal ion cytotoxicity. Dent Mater 10:156–161

    Article  CAS  PubMed  Google Scholar 

  • Wataha JC, O’Dell NL, Singh BB et al (2001) Relating nickel-induced tissue inflammation to nickel release in vivo. J Biomed Mater Res 58:537–544

    Article  CAS  PubMed  Google Scholar 

  • Webb M, Weinzierl SM (1972) Uptake of 63Ni2+ from its complexes with proteins and other ligands by mouse dermal fibroblasts in vitro. Br J Cancer 26:292

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Weinandy S, Rongen L, Schreiber F et al (2012) The BioStent: novel concept for a viable stent structure. Tissue Eng Part A 18:1818–1826. doi:10.1089/ten.tea.2011.0648

    Article  CAS  PubMed  Google Scholar 

  • Wever DJ, Veldhuizen AG, Sanders MM et al (1997) Cytotoxic, allergic and genotoxic activity of a nickel-titanium alloy. Biomaterials 18:1115–1120

    Article  CAS  PubMed  Google Scholar 

  • Wever DJ, Veldhuizen AG, de Vries J et al (1998) Electrochemical and surface characterization of a nickel-titanium alloy. Biomaterials 19:761–769

    Article  CAS  PubMed  Google Scholar 

  • Winn B, Quarles CD, Marcus RK, LaBerge M (2011) Nickel ions inhibit alpha-actin expression and decrease aspect ratio of rat vascular smooth muscle cells in vitro. Metallomics 3:934–940. doi:10.1039/c1mt00035g

    Article  CAS  PubMed  Google Scholar 

  • Yang D, Lü X, Hong Y et al (2013) The molecular mechanism of mediation of adsorbed serum proteins to endothelial cells adhesion and growth on biomaterials. Biomaterials 34:5747–5758

    Article  CAS  PubMed  Google Scholar 

  • Yang D, Lü X, Hong Y et al (2014) The molecular mechanism for effects of TiN coating on NiTi alloy on endothelial cell function. Biomaterials 35:6195–6205. doi:10.1016/j.biomaterials.2014.04.069

    Article  CAS  PubMed  Google Scholar 

  • Yeung KWK, Poon RWY, Liu XY et al (2005) Investigation of nickel suppression and cytocompatibility of surface-treated nickel-titanium shape memory alloys by using plasma immersion ion implantation. J Biomed Mater Res A 72:238–245. doi:10.1002/jbm.a.30201

    Article  CAS  PubMed  Google Scholar 

  • Zhang YM, Bataillon-Linez P, Huang P et al (2004) Surface analyses of micro-arc oxidized and hydrothermally treated titanium and effect on osteoblast behavior. J Biomed Mater Res A 68:383–391. doi:10.1002/jbm.a.20063

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgement

This work was supported by the research project GA15-16336S of Grant agency of the Czech republic.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Monika Pavkova Goldbergova.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sevcikova, J., Pavkova Goldbergova, M. Biocompatibility of NiTi alloys in the cell behaviour. Biometals 30, 163–169 (2017). https://doi.org/10.1007/s10534-017-0002-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10534-017-0002-5

Keywords

Navigation