Skip to main content

Advertisement

Log in

Cytotoxicity of Ni from Surface-Treated Porous Nitinol (PNT) on Osteoblast Cells

  • Published:
Journal of Materials Engineering and Performance Aims and scope Submit manuscript

Abstract

The leaching of nickel from the surface of porous Nitinol (PNT) is mainly dependent on its surface characteristics, which can be controlled by appropriate surface treatments. In this investigation, PNT was subjected to two surface treatments, namely, water-boiling and dry-heating passivations. Phosphate buffer saline (PBS) solutions obtained from cyclic potentiodynamic polarization tests on PNT were employed to assess the cytotoxicity of Ni contained therein on osteoblast cells by Sulforhodamine B (SRB) assay. In addition, similar concentrations of Ni were added exogenously to cell culture media to determine cytotoxic effects on osteoblast cells. The morphologies of the untreated and the surface-treated PNTs were examined using SEM and AFM. Furthermore, growth of human osteoblast cells was observed on the PNT surfaces.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. J. Ryhanen, E. Niemie, W. Serlo, E. Niemela, P. Sandvik, H. Pernu, and T. Salo, Biocompatibility of Nickel-Titanium Shape Memory Metal and Its Corrosion Behavior in Human Cell Cultures, J. Biomed. Mater. Res., 1997, 35(4), p 451–457

    Article  CAS  Google Scholar 

  2. S.A. Shabalovskaya, Physicochemical and Biological Aspects of Nitinol as a Biomaterial, Int. Mater. Rev., 2001, 46(5), p 233–250

    Article  CAS  Google Scholar 

  3. A. Kapanen, J. Ivesaro, A. Danilov, J. Ryhänen, P. Lehenkari, and J. Tuukkanen, Behaviour of Nitinol in Osteoblast-like ROS-17 Cell Culture, Biomaterials, 2002, 23(3), p 645–650

    Article  CAS  Google Scholar 

  4. S.A. Shabalovskaya, G. Rondelli, and M. Rettenmayr, Nitinol Surfaces for Implantation, J. Mater. Eng. Perform., 2009, 18(5–6), p 470–474

    Article  CAS  Google Scholar 

  5. J.P.Y. Ho, S.L. Wu, R.W.Y. Poon, C.Y. Chung, and S.C. Tjong, Oxygen Plasma Treatment to Restrain Nickel Out-Diffusion from Porous Nickel Titanium Orthopedic Materials, Surf. Coat. Technol., 2007, 201, p 4893–4896

    Article  CAS  Google Scholar 

  6. N. Hallab, K. Merritt, and J.J. Jacobs, Metal Sensitivity in Patients with Orthopaedic Implants, J. Bone Joint Surg. Am., 2001, 83A(3), p 428–436

    Article  Google Scholar 

  7. W. Haider, N. Munroe, V. Tek, A.J. McGoron, P.K.S. Gill, C. Pulletikurthi, and S. Pandya, An Assessment of Metal Ions Release from Ternary Nitinol Alloys Under Static and Dynamic Conditions, Proceedings of SMST 2010, May 16-20, 2010 (Pacific Grove, CA), 2010

  8. S. Wu, X. Liu, Y.L. Chan, P.K. Chu, C.Y. Chung, C. Chu, and K.W.K. Yeung, Nickel Release Behavior and Surface Characteristics of Porous NiTi Shape Memory Alloy Modified by Different Chemical Processes, J. Biomed. Mater. Res. A, 2009, 89, p 483–489

    Article  Google Scholar 

  9. A. Bansiddhi, T.D. Sargeant, S.I. Stupp, and D.C. Dunand, Porous NiTi for Bone Implants: A Review, Acta Biomater., 2008, 4, p 773–782

    Article  CAS  Google Scholar 

  10. L. Chu, P.H. Lin, and C.Y. Chung, Characterization of Transformation Behavior in Porous Ni-rich NiTi Shape Memory Alloy Fabricated by Combustion Synthesis, J. Mater. Sci., 2005, 40, p 773–776

    Article  CAS  Google Scholar 

  11. M.L. Cluett and J.H. Yoe, Spectrophotometric Determination of Submicrogram Amounts of Nickel in Human Blood, Anal. Chem., 1957, 29, p 1265–1269

    Article  CAS  Google Scholar 

  12. H.M. Shen and Q.F. Zhang, Risk Assessment of Nickel Carcinogenicity and Occupational Lung Cancer, Environ. Health Perspect., 1994, 102(1), p 275–282

    Article  CAS  Google Scholar 

  13. M. Cempel and G.N. Polish, Nickel: A Review of Its Sources and Environmental Toxicology, J. Environ. Stud., 2006, 15, p 375–382

    CAS  Google Scholar 

  14. F.W. Sunderman and A. Aitio, Nickel in the Human Environment, Proceedings of a Joint Symposium Held at IARC, International Agency for Research on Cancer, Lyon, March 8–11, 1983, p 350

  15. M. Geetha, A.K. Singh, R. Asokamani, and A.K. Gogia, Ti Based Biomaterials, the Ultimate Choice for Orthopaedic Implants—A Review, Prog. Mater. Sci., 2009, 54, p 397–425

    Article  CAS  Google Scholar 

  16. D.M. Brunette, The Effects of Implant Surface Topography on the Behavior of Cells, Int. J. Oral Maxillofac. Implants, 1988, 3, p 231–246

    CAS  Google Scholar 

  17. J.L. Ong, G.N. Raikar, and L.C. Lucas, Effect of Surface Topography of Titanium on Surface Chemistry and Cellular Response, Implant Dent., 1996, 5, p 83–88

    Article  CAS  Google Scholar 

  18. K.T. Bowers, B.A. Randolph, D.G. Wick, and C.M. Michaels, Optimization of Surface Micromorphology for Enhanced Osteoblast Responses In Vitro, Int. J. Oral Maxillofac. Implants, 1992, 7, p 302–310

    CAS  Google Scholar 

  19. B. Setzer, M. Bachle, M.C. Metzger, and R.J. Kohal, The Gene-Expression and Phenotypic Response of hFOB 1.19 Osteoblasts to Surface-Modified Titanium and Zirconia, Biomaterials, 2009, 30, p 979–990

    Article  CAS  Google Scholar 

  20. Y.W. Gu, H. Li, B.Y. Tay, C.S. Lim, M.S. Yong, and K.A. Khor, In Vitro Bioactivity and Osteoblast Response of Porous NiTi Synthesized by SHS Using Nanocrystalline Ni-Ti Reaction Agent, Surf. Coat. Technol., 2008, 202, p 2458–2462

    Article  Google Scholar 

  21. A. Sargeant and T. Goswami, Hip Implants: Paper V. Physiological Effect, Mater. Des., 2006, 27(4), p 287–307

    Article  CAS  Google Scholar 

  22. C. Trépanier, T.K. Leung, M. Tabrizian, L.H. Yahia, J.G. Bienvenue, J.F. Tanguay, D.L. Piron, and L. Bilodeau, Preliminary Investigation of the Effects of Surface Treatments on Biological Response to Shape Memory NiTi Stents, J. Biomed. Mater. Res., 1999, 48, p 165–171

    Article  Google Scholar 

  23. C. Wirth, V. Comte, C. Lagneau, P. Exbrayat, M. Lissac, N.J. Renault, and L. Ponsonnet, Nitinol Surface Roughness Modulates In Vitro Cell Response: A Comparison Between Fibroblasts and Osteoblasts, Mater. Sci. Eng. C, 2005, 25, p 51–60

    Article  Google Scholar 

  24. J.D. Bobyn, R.M. Pilliar, H.U. Cameron, and G.C. Weatherly, The Optimum Pore Size for the Fixation of Porous-Surfaced Metal Implants by the Ingrowth of Bone, Clin. Orthop. Relat. Res., 1980, 150, p 263–270

    Google Scholar 

  25. S.A. Shabalovskaya, G.C.R. Andreas, L. Undisz, J.W. Anderegg, T.D. Burleigh, and M.E. Rettenmayr, The Electrochemical Characteristics of Native Nitinol Surfaces, Biomaterials, 2009, 30, p 3662–3671

    Article  CAS  Google Scholar 

  26. S.A. Shabalovskaya, J. Anderegg, F. Laab, P.A. Thiel, and G. Rondelli, Surface Conditions of Nitinol Wires, Tubing, and As-Cast Alloys, the Effect of Chemical Etching, Aging in Boiling Water, and Heat Treatment, J. Biomed. Mater. Res. B Appl. Biomater., 2003, 65(B), p 193–203

    Article  CAS  Google Scholar 

  27. S.A. Shabalovskaya, J. Anderegg, and J.V. Humbeeck, Critical Overview of Nitinol Surfaces and Their Modifications for Medical Applications, Acta Biomater., 2008, 4, p 447–467

    Article  CAS  Google Scholar 

  28. B.O. Brien, W.M. Carroll, and M.J. Kelly, Passivation of Nitinol Wire for Vascular Implants—A Demonstration of the Benefits, Biomaterials, 2002, 23(8), p 1739–1748

    Article  Google Scholar 

  29. G. Tepe, J. Schmehl, H.P. Wendel, S. Schaffner, S. Heller, M. Gianotti, C.D. Claussen, and S.H. Duda, Reduced Thrombogenicity of Nitinol Stents—In Vitro Evaluation of Different Surface Modifications and Coatings, Biomaterials, 2006, 27, p 643–650

    Article  CAS  Google Scholar 

  30. B. Bertheville, Porous Single-Phase NiTi Processed Under Ca Reducing Vapor for Use as a Bone Graft Substitute, Biomaterials, 2006, 27(8), p 1246–1250

    Article  CAS  Google Scholar 

  31. M. Es-Souni, M. Es-Souni, and H.F. Brandies, On the Properties of Two Binary NiTi Shape Memory Alloys. Effects of Surface Finish on the Corrosion Behaviour and In Vitro Biocompatibility, Biomaterials, 2002, 23, p 2887–2894

    Article  CAS  Google Scholar 

  32. W. Chrzanowski, E.A. Neel, D. Armitage, and J. Knowles, Effect of Surface Treatment on the Bioactivity of Nickel-Titanium, Acta Biomater., 2008, 4, p 1969–1984

    Article  CAS  Google Scholar 

  33. J.E. Terceroa, S. Namin, D. Lahiri, K. Balani, N. Tsoukias, and A. Agarwal, Effect of Carbon Nanotube and Aluminum Oxide Addition on Plasma-Sprayed Hydroxyapatite Coating’s Mechanical Properties and Biocompatibility, Mater. Sci. Eng. C, 2009, 29(7), p 2195–2202

    Article  Google Scholar 

  34. Standard Test Method for Conducting Cyclic Potentiodynamic Polarization Measurements to Determine the Corrosion Susceptibility of Small Implant Devices, ASTM F2129 – 08, Annual Book of ASTM Standards, vol. 13.01

  35. W. Haider, “Enhanced Biocompatibility of NiTi (Nitinol) via Surface Treatment and Alloying,” Ph.D. dissertation, Florida International University, Miami, FL, USA, 2010

  36. N. Munroe, C. Pulletikurthi, and W. Haider, Enhaced Biocompatibility of Porous Nitinol, J. Mater. Eng. Perform., 2009, 18(5–6), p 765–767

    Article  CAS  Google Scholar 

  37. W. Haider, N. Munroe, and C. Pulletikurthi, A Comparative Biocompatibility Analysis of Ternary Nitinol Alloys, J. Mater. Eng. Perform., 2009, 18(5–6), p 760–764

    Article  CAS  Google Scholar 

Download references

Acknowledgment

This research was supported by the Award number SC3GM084816 from the National Institute of General Medical Science.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to C. Pulletikurthi.

Additional information

This article is an invited paper selected from presentations at Shape Memory and Superelastic Technologies 2010, held May 16-20, 2010, in Pacific Grove, California, and has been expanded from the original presentation.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pulletikurthi, C., Munroe, N., Gill, P. et al. Cytotoxicity of Ni from Surface-Treated Porous Nitinol (PNT) on Osteoblast Cells. J. of Materi Eng and Perform 20, 824–829 (2011). https://doi.org/10.1007/s11665-011-9930-3

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11665-011-9930-3

Keywords

Navigation