Skip to main content

Advertisement

Log in

Rapid cycling of recently fixed carbon in a Spartina alterniflora system: a stable isotope tracer experiment

  • Published:
Biogeochemistry Aims and scope Submit manuscript

Abstract

Carbon dynamics in vegetated ecosystems are influenced by plants, belowground bacteria, and their interactions. Consequently, quantifying the fate of new plant production, identifying bacterial carbon sources, and evaluating plant–microbe interactions can provide insight to carbon cycling and storage. To follow short-term carbon transformations in a Spartina alterniflora—soil system, we applied 13C-labeled CO2 to aboveground leaves and chased it belowground into roots and bacterial lipids. Plant mesocosms were exposed to 13CO2 for 0, 1, 3, or 6 h. Incorporation of 13CO2 by plants and soil microbes was measured immediately after the incubation (Day 0) and 24 h later (Day 1). During a 24 h period, 41–64 % of the 13CO2 fixed by S. alterniflora was retained in leaves, 2.7–6.4 % was transferred to roots, and 30–55 % was lost via respiration. Small fractions of 13C assimilated by aboveground leaves were detected belowground in bacterial lipids on Day 1. Enrichment of lipids specific to sulfate reducing bacteria (10-methyl C16:0, cy-C17:0) indicated tight coupling between aboveground plant production and belowground anaerobic metabolisms. Overall, we found that a substantial fraction of new production was returned to the atmosphere within 24 h and that belowground bacteria were tightly coupled to plant dynamics.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Allard V, Robin C, Newton PCD, Lieffering M, Soussana JF (2006) Short and long-term effects of elevated CO2 on Lolium perenne rhizodeposition and its consequences on soil organic matter turnover and plant N yield. Soil Biol Biochem 38:1178–1187. doi:10.1016/j.soilbio.2005.10.002

    Article  Google Scholar 

  • Andrews JA, Harrison KG, Matamala R, Schlesinger WH (1999) Separation of root respiration from total soil respiration using carbon-13 labeling during free-air carbon dioxide enrichment (FACE). Soil Sci Soc Am J 63:1429–1435. doi:10.2136/sssaj1999.6351429x

    Article  Google Scholar 

  • Balasooriya WK, Denef K, Peters J, Verhoest NEC, Boeckx P (2008) Vegetation composition and soil microbial community structural changes along a wetland hydrological gradient. Hydrol Earth Syst Sci 12:277–291. doi:10.5194/hess-12-277-2008

    Article  Google Scholar 

  • Balasooriya W, Huygens D, Denef K, Roobroeck D, Verhoest NC, Boeckx P (2013) Temporal variation of rhizodeposit-C assimilating microbial communities in a natural wetland. Biol Fertil Soils 49:333–341. doi:10.1007/s00374-012-0729-7

    Article  Google Scholar 

  • Bardgett RD, Freeman C, Ostle NJ (2008) Microbial contributions to climate change through carbon cycle feedbacks. ISME J 2:805–814

    Article  Google Scholar 

  • Benner R, Fogel ML, Sprague EK (1991) Diagenesis of belowground biomass of Spartina alterniflora in saltmarsh sediments. Limnol Oceanogr 36:1358–1374

    Article  Google Scholar 

  • Bianchi TS, Canuel EA (2011) Chemical biomarkers in aquatic ecosystems. Princeton University Press, Princeton

    Book  Google Scholar 

  • Bligh EG, Dyer WJ (1959) A rapid method of total lipid extraction and purification. Can J Biochem Physiol 37:911–917

    Article  Google Scholar 

  • Boschker HTS, de Brouwer JFC, Cappenberg TE (1999) The contribution of macrophyte-derived organic matter to microbial biomass in salt-marsh sediments: stable carbon isotope analysis of microbial biomarkers. Limnol Oceanogr 44:309–319

    Article  Google Scholar 

  • Bouillon S, Boschker HTS (2006) Bacterial carbon sources in coastal sediments: a cross-system analysis based on stable isotope data of biomarkers. Biogeosciences 3:175–185. doi:10.5194/bg-3-175-2006

    Article  Google Scholar 

  • Bowling DR, McDowell NG, Bond BJ, Law BE, Ehleringer JR (2002) 13C content of ecosystem respiration is linked to precipitation and vapor pressure deficit. Oecologia 131:113–124. doi:10.1007/s00442-001-0851-y

    Article  Google Scholar 

  • Butler JL, Williams MA, Bottomley PJ, Myrold DD (2003) Microbial community dynamics associated with rhizosphere carbon flow. Appl Environ Microbiol 69:6793–6800. doi:10.1128/aem.69.11.6793-6800.2003

    Article  Google Scholar 

  • Canuel EA, Freeman KH, Wakeham SG (1997) Isotopic compositions of lipid biomarker compounds in estuarine plants and surface sediments. Limnol Oceanogr 42:1570–1583

    Article  Google Scholar 

  • Cardon ZG, Gage DJ (2006) Resource exchange in the rhizosphere: molecular tools and the microbial perspective. Annu Rev Ecol Evol Syst 37:459–488. doi:10.2307/30033840

    Article  Google Scholar 

  • Chmura GL, Anisfeld SC, Cahoon DR, Lynch JC (2003) Global carbon sequestration in tidal, saline wetland soils. Glob Biogeochem Cycles 17:1111. doi:10.1029/2002gb001917

    Article  Google Scholar 

  • Chmura GL, Kellman L, Guntenspergen GR (2011) The greenhouse gas flux and potential global warming feedbacks of a northern macrotidal and microtidal salt marsh. Environ Res Lett 6:044016

    Article  Google Scholar 

  • Conrad R, Klose M (2011) Stable carbon isotope discrimination in rice field soil during acetate turnover by syntrophic acetate oxidation or acetoclastic methanogenesis. Geochim Cosmochim Acta 75:1531–1539. doi:10.1016/j.gca.2010.12.019

    Article  Google Scholar 

  • Cornell JA, Craft CB, Megonigal JP (2007) Ecosystem gas exchange across a created salt marsh chronosequence. Wetlands 27:240–250. doi:10.1672/0277-5212(2007)27[240:egeaac]2.0.co;2

    Article  Google Scholar 

  • Dawson TE, Mambelli S, Plamboeck AH, Templer PH, Tu KP (2002) Stable isotopes in plant ecology. Annu Rev Ecol Syst 33:507–559. doi:10.2307/3069272

    Article  Google Scholar 

  • Denef K, Bubenheim H, Lenhart K, Vermeulen J, Van Cleemput O, Boeckx P, Müller C (2007) Community shifts and carbon translocation within metabolically-active rhizosphere microorganisms in grasslands under elevated CO2. Biogeosciences 4:769–779. doi:10.5194/bg-4-769-2007

    Article  Google Scholar 

  • Dowling NJE, Widdel F, White DC (1986) Phospholipid ester-linked fatty acid biomarkers of acetate-oxidizing sulphate-reducers and other sulphide-forming bacteria. J Gen Microbiol 132:1815–1825. doi:10.1099/00221287-132-7-1815

    Google Scholar 

  • Drigo B, Kowalchuk GA, Knapp BA, Pijl AS, Boschker HTS, van Veen JA (2013) Impacts of 3 years of elevated atmospheric CO2 on rhizosphere carbon flow and microbial community dynamics. Glob Chang Biol 19:621–636. doi:10.1111/gcb.12045

    Article  Google Scholar 

  • Ekblad A, Hogberg P (2001) Natural abundance of 13C in CO2 respired from forest soils reveals speed of link between tree photosynthesis and root respiration. Oecologia 127:305–308. doi:10.1007/s004420100667

    Article  Google Scholar 

  • Emery HE, Fulweiler RW (2014) Spartina alterniflora and invasive Phragmites australis stands have similar greenhouse gas emissions in a New England marsh. Aquat Bot 116:83–92. doi:10.1016/j.aquabot.2014.01.010

    Article  Google Scholar 

  • Evershed RP, Crossman ZM, Bull ID, Mottram H, Dungait JAJ, Maxfield PJ, Brennand EL (2006) 13C-Labelling of lipids to investigate microbial communities in the environment. Curr Opin Biotechnol 17:72–82. doi:10.1016/j.copbio.2006.01.003

    Article  Google Scholar 

  • Fallon R, Pfaender F (1976) Production and fractionation of 14CO2 labeled smooth cordgrass, Spartina alterniflora. Chesap Sci 17:292–295. doi:10.2307/1350517

    Article  Google Scholar 

  • Ferguson RL, Williams RB (1974) A growth chamber for the production of 14C-labeled salt marsh plants and its application to smooth cordgrass, Spartina alterniflora Loisel. J Exp Mar Biol Ecol 14:251–259. doi:10.1016/0022-0981(74)90006-9

    Article  Google Scholar 

  • Gross MF, Hardisky MA, Wolf PL, Klemas V (1991) Relationship between aboveground and belowground biomass of Spartina alterniflora (smooth cordgrass). Estuaries 14:180–191. doi:10.2307/1351692

    Article  Google Scholar 

  • Guckert JB, Antworth CP, Nichols PD, White DC (1985) Phospholipid, ester-linked fatty acid profiles as reproducible assays for changes in prokaryotic community structure of estuarine sediments. FEMS Microbiol Lett 31:147–158. doi:10.1016/0378-1097(85)90016-3

    Article  Google Scholar 

  • Hanson PJ, Edwards NT, Garten CT, Andrews JA (2000) Separating root and soil microbial contributions to soil respiration: a review of methods and observations. Biogeochemistry 48:115–146. doi:10.1023/a:1006244819642

    Article  Google Scholar 

  • Hines ME, Evans RS, Sharak Genthner BR, Willis SG, Friedman S, Rooney-Varga JN, Devereux R (1999) Molecular phylogenetic and biogeochemical studies of sulfate-reducing bacteria in the rhizosphere of Spartina alterniflora. Appl Environ Microbiol 65:2209–2216

    Google Scholar 

  • Howarth RW, Teal JM (1979) Sulfate reduction in a New England salt marsh. Limnol Oceanogr 24:999–1013. doi:10.2307/2835572

    Article  Google Scholar 

  • Hwang Y-H, Morris JT (1992) Fixation of inorganic carbon from different sources and its translocation in Spartina alterniflora Loisel. Aquat Bot 43:137–147. doi:10.1016/0304-3770(92)90039-L

    Article  Google Scholar 

  • Jones DL, Nguyen C, Finlay RD (2009) Carbon flow in the rhizosphere: carbon trading at the soil–root interface. Plant Soil 321:5–33. doi:10.1007/s11104-009-9925-0

    Article  Google Scholar 

  • Kaneda T (1991) Iso- and anteiso-fatty acids in bacteria: biosynthesis, function, and taxonomic significance. Microbiol Mol Biol Rev 55:288–302

    Google Scholar 

  • Koretsky CM, Moore CM, Lowe KL, Meile C, DiChristina TJ, Van Cappellen P (2003) Seasonal oscillation of microbial iron and sulfate reduction in saltmarsh sediments (Sapelo Island, GA, USA). Biogeochemistry 64:179–203. doi:10.1023/a:1024940132078

    Article  Google Scholar 

  • Kuzyakov Y, Domanski G (2000) Carbon input by plants into the soil. Review. J Plant Nutr Soil Sci 163:421–431. doi:10.1002/1522-2624(200008)163:4

    Article  Google Scholar 

  • Lenssen GM, van Duin WE, Jak P, Rozema J (1995) The response of Aster tripolium and Puccinellia maritima to atmospheric carbon dioxide enrichment and their interactions with flooding and salinity. Aquat Bot 50:181–192. doi:10.1016/0304-3770(95)00453-7

    Article  Google Scholar 

  • Londry KL, Jahnke LL, Des Marais DJ (2004) Stable carbon isotope ratios of lipid biomarkers of sulfate-reducing bacteria. Appl Environ Microbiol 70:745–751. doi:10.1128/aem.70.2.745-751.2004

    Article  Google Scholar 

  • Lu Y, Conrad R (2005) In situ stable isotope probing of methanogenic Archaea in the rice rhizosphere. Science 309:1088–1090. doi:10.1126/science.1113435

    Article  Google Scholar 

  • Lu Y, Watanabe A, Kimura M (2002) Contribution of plant-derived carbon to soil microbial biomass dynamics in a paddy rice microcosm. Biol Fertil Soils 36:136–142. doi:10.1007/s00374-002-0504-2

    Article  Google Scholar 

  • Lu Y, Murase J, Watanabe A, Sugimoto A, Kimura M (2004) Linking microbial community dynamics to rhizosphere carbon flow in a wetland rice soil. FEMS Microbiol Ecol 48:179–186. doi:10.1016/j.femsec.2004.01.004

    Article  Google Scholar 

  • Lu Y, Abraham W-R, Conrad R (2007) Spatial variation of active microbiota in the rice rhizosphere revealed by in situ stable isotope probing of phospholipid fatty acids. Environ Microbiol 9:474–481. doi:10.1111/j.1462-2920.2006.01164.x

    Article  Google Scholar 

  • Lytle RW, Hull RJ (1980a) Photoassimilate distribution in Spartina alterniflora Loisel. I. Vegetative and floral development. Agron J 72:933–938. doi:10.2134/agronj1980.00021962007200060017x

    Article  Google Scholar 

  • Lytle RW, Hull RJ (1980b) Photoassimilate distribution in Spartina alterniflora Loisel. II. Autumn and winter storage and spring regrowth. Agron J 72:938–942. doi:10.2134/agronj1980.00021962007200060018x

    Article  Google Scholar 

  • Magenheimer JF, Moore TR, Chmura GL, Daoust RJ (1996) Methane and carbon dioxide flux from a macrotidal salt marsh, Bay of Fundy, New Brunswick. Estuaries 19:139–145. doi:10.2307/1352658

    Article  Google Scholar 

  • McLeod E et al (2011) A blueprint for blue carbon: Toward an improved understanding of the role of vegetated coastal habitats in sequestering CO2. Front Ecol Environ 9:552–560. doi:10.1890/110004

    Article  Google Scholar 

  • Megonigal JP, Whalen SC, Tissue DT, Bovard BD, Allen AS, Albert DB (1999) A plant-soil-atmosphere microcosm for tracing radiocarbon from photosynthesis through methanogenesis. Soil Sci Soc Am J 63:665–671. doi:10.2136/sssaj1999.03615995006300030033x

    Article  Google Scholar 

  • Middelburg JJ, Barranguet C, Boschker HTS, Herman PMJ, Moens T, Heip CHR (2000) The fate of intertidal microphytobenthos carbon: an in situ 13C-labeling study. Limnol Oceanogr 45:1224–1234. doi:10.4319/lo.2000.45.6.1224

    Article  Google Scholar 

  • Neubauer SC, Givler K, Valentine S, Megonigal JP (2005) Seasonal patterns and plant-mediated controls of subsurface wetland biogeochemistry. Ecology 86:3334–3344. doi:10.1890/04-1951

    Article  Google Scholar 

  • Parkes JR, Brock F, Banning N, Hornibrook ERC, Roussel EG, Weightman AJ, Fry JC (2012) Changes in methanogenic substrate utilization and communities with depth in a salt-marsh, creek sediment in southern England. Estuar Coast Shelf Sci 96:170–178. doi:10.1016/j.ecss.2011.10.025

    Article  Google Scholar 

  • Paterson E (2003) Importance of rhizodeposition in the coupling of plant and microbial productivity. Eur J Soil Sci 54:741–750. doi:10.1046/j.1351-0754.2003.0557.x

    Article  Google Scholar 

  • Perry GJ, Volkman JK, Johns RB, Bavor HJ (1979) Fatty acids of bacterial origin in contemporary marine sediments. Geochim Cosmochim Acta 43:1715–1725

    Article  Google Scholar 

  • Phillips RP, Fahey TJ (2005) Patterns of rhizosphere carbon flux in sugar maple (Acer saccharum) and yellow birch (Betula allegheniensis) saplings. Glob Chang Biol 11:983–995. doi:10.1111/j.1365-2486.2005.00959.x

    Article  Google Scholar 

  • Romanek CS, Zhang CL, Li Y, Horita J, Vali H, Cole DR, Phelps TJ (2003) Carbon and hydrogen isotope fractionations associated with dissimilatory iron-reducing bacteria. Chem Geol 195:5–16. doi:10.1016/S0009-2541(02)00385-6

    Article  Google Scholar 

  • Schultz DM, Quinn JG (1973) Fatty acid composition of organic detritus from Spartina alterniflora. Estuar Coast Mar Sci 1:177–190. doi:10.1016/0302-3524(73)90068-6

    Article  Google Scholar 

  • Sessions AL (2006) Seasonal changes in D/H fractionation accompanying lipid biosynthesis in Spartina alterniflora. Geochim Cosmochim Acta 70:2153–2162. doi:10.1016/j.gca.2006.02.003

    Article  Google Scholar 

  • Swinnen J, Van Veen JA, Merckx R (1994) 14C pulse-labelling of field-grown spring wheat: an evaluation of its use in rhizosphere carbon budget estimations. Soil Biol Biochem 26:161–170. doi:10.1016/0038-0717(94)90159-7

    Article  Google Scholar 

  • Taylor J, Parkes RJ (1985) Identifying different populations of sulfate-reducing bacteria within marine sediment systems, using fatty-acid biomarkers. J Gen Microbiol 131:631–642

    Google Scholar 

  • Teece MA, Fogel ML, Dollhopf ME, Nealson KH (1999) Isotopic fractionation associated with biosynthesis of fatty acids by a marine bacterium under oxic and anoxic conditions. Org Geochem 30:1571–1579. doi:10.1016/S0146-6380(99)00108-4

    Article  Google Scholar 

  • Treonis AM, Ostle NJ, Stott AW, Primrose R, Grayston SJ, Ineson P (2004) Identification of groups of metabolically-active rhizosphere microorganisms by stable isotope probing of PLFAs. Soil Biol Biochem 36:533–537. doi:10.1016/j.soilbio.2003.10.015

    Article  Google Scholar 

  • Valiela I, Teal JM, Persson NY (1976) Production and dynamics of experimental enriched salt marsh vegetation: belowground biomass. Limnol Oceanogr 21:245–252

    Article  Google Scholar 

  • Van Der Heijden MGA, Bardgett RD, Van Straalen NM (2008) The unseen majority: soil microbes as drivers of plant diversity and productivity in terrestrial ecosystems. Ecol Lett 11:296–310. doi:10.1111/j.1461-0248.2007.01139.x

    Article  Google Scholar 

  • Volkman JK, Johns RB, Gillan FT, Perry GJ, Bavor HJ (1980) Microbial lipids of an intertidal sediment–I. Fatty acids and hydrocarbons. Geochim Cosmochim Acta 44:1133–1143

    Article  Google Scholar 

  • Volkman JK, Barrett SM, Blackburn SI, Mansour MP, Sikes EL, Gelin F (1998) Microalgal biomarkers: a review of recent research developments. Org Geochem 29:1163–1179

    Article  Google Scholar 

  • Wang XC, Chen RF, Berry A (2003) Sources and preservation of organic matter in Plum Island salt marsh sediments (MA, USA): long-chain n-alkanes and stable carbon isotope compositions. Estuar Coast Shelf Sci 58:917–928. doi:10.1016/j.ecss.2003.07.006

    Article  Google Scholar 

  • Weston NB, Neubauer SC, Velinsky DJ, Vile MA (2014) Net ecosystem carbon exchange and the greenhouse gas balance of tidal marshes along an estuarine salinity gradient. Biogeochemistry 120:163–189. doi:10.1007/s10533-014-9989-7

    Article  Google Scholar 

  • Whiting GJ, Gandy EL, Yoch DC (1986) Tight coupling of root-associated nitrogen fixation and plant photosynthesis in the salt marsh grass Spartina alterniflora and carbon dioxide enhancement of nitrogenase activity. Appl Environ Microbiol 52:108–113

    Google Scholar 

  • Yao H, Thornton B, Paterson E (2012) Incorporation of 13C-labelled rice rhizodeposition carbon into soil microbial communities under different water status. Soil Biol Biochem 53:72–77. doi:10.1016/j.soilbio.2012.05.006

    Article  Google Scholar 

Download references

Acknowledgments

Thanks to J.W. Pohlman for providing access to the CRDS instruments that were used to collect the CO2 gas flux data and constructive input on earlier versions of this manuscript. Many thanks to S. Sievert, A. Giblin, Z. Cardon, and F. Thomas for conversations that guided the experimental setup, design, and sampling. We greatly appreciate the Plum Island Ecosystem Long Term Ecological Research site (PIE-LTER; NSF-Award 1238212) for allowing us to collect plant cores and peat for this experiment. M. Diaz, B. McLaughlin, M.A. Wunderly, J. Nelson, and K. Hoering helped with sample collection. G. Swarr and J. Tagliaferre prepared samples and conducted analyses. This manuscript was improved by comments from C. S. Hopkinson, S. C. Neubauer, M. Osland, and two anonymous reviewers. J. Reeve was supported by WHOI’s Summer Student Fellow program while Woods Hole Partnership in Education Program supported B. McLaughlin and M. Diaz. Our study was funded by WHOI’s Coastal Ocean Institute with additional support from WHOI.

Conflict of interest

The authors declare that they have no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Amanda C. Spivak.

Additional information

Responsible Editor: Robert Cook

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Spivak, A.C., Reeve, J. Rapid cycling of recently fixed carbon in a Spartina alterniflora system: a stable isotope tracer experiment. Biogeochemistry 125, 97–114 (2015). https://doi.org/10.1007/s10533-015-0115-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10533-015-0115-2

Keywords

Navigation