Skip to main content
Log in

Estimation of nitrogen inputs to catchments: comparison of methods and consequences for riverine export prediction

  • Published:
Biogeochemistry Aims and scope Submit manuscript

Abstract

Catchment nitrogen (N) budgets are a valuable tool to assess relative magnitude of N inputs and predict losses via riverine export. However, a range of computational approaches may be chosen, potentially affecting the modeled relationship between inputs and exports. To determine the influence of various assumptions and computational details on the effectiveness of N input estimates in predicting riverine N export, we compared eight separate net anthropogenic N input budgets and one soils compartment budget for each of 18 Lake Michigan catchments. N input estimation methods that took into account seasonal fluctuations in livestock numbers and estimated crop N-fixation by legume yield rather than area harvested best predicted river N export. The average annual river export of N from the 18 catchments ranged from less than 300 kg N km−2 year−1 in forested areas to more than 800 kg-N km−2 year−1 in agricultural catchments and 1,580 kg-N km−2 year−1 in small urban catchments. Using the most effective model (R 2 = 0.95, median prediction error = 1.8%) riverine N exports were found to account for 21% of N inputs. Other methods predicted riverine N exports less well (R 2 = 0.61–0.73), bias was greater, and the fractional export of N inputs by rivers decreased to ~13%. The soil N budget also was a less effective predictor of river export. This comparison demonstrates that N budgeting that incorporates more detailed description of agricultural N sources can substantially improve prediction of riverine N exports from catchments with a wide range of landscape characteristics.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Aber JD, Goodale CL, Ollinger SV, Smith ML, Magill AH, Martin ME, Hallett RA, Stoddard JL (2003) Is nitrogen deposition altering the nitrogen status of northeastern forests? Bioscience 53:375–389. doi:10.1641/0006-3568(2003)053[0375:INDATN]2.0.CO;2

    Article  Google Scholar 

  • Alexander RB, Smith RA (1990) County-level estimates of nitrogen and phosphorus fertilizer use in the United States, 1945 to 1985. USGS, Reston

    Google Scholar 

  • Alexander RB, Johnes PJ, Boyer EW, Smith RA (2002) A comparison of models for estimating the riverine export of nitrogen from large catchments. Biogeochemistry 57:295–339. doi:10.1023/A:1015752801818

    Article  Google Scholar 

  • Barry DAJ, Goorahoo D, Goss MJ (1993) Estimation of nitrate concentrations in groundwater using a whole farm nitrogen budget. J Environ Qual 22:767–775

    Google Scholar 

  • Battaglin WA (1994) Fertilizer sales data 1986 to 1991. Water Resources Division (WRD). USGS, Lakewood

    Google Scholar 

  • Battye R, Battye W, Overcash C, Fudge S (1994) Development and selection of ammonia emission factors final report. US-EPA Atmospheric Research and Exposure Assessment Laboratory, Durham

    Google Scholar 

  • Boyer EW, Goodale CL, Jaworsk NA, Howarth RW (2002) Anthropogenic nitrogen sources and relationships to riverine nitrogen export in the northeastern USA. Biogeochemistry 57:137–169. doi:10.1023/A:1015709302073

    Article  Google Scholar 

  • Boynton WR, Garber JH, Summers R, Kemp WM (1995) Inputs, transformations, and transport of nitrogen and phosphorus in Chesapeake Bay and selected tributaries. Estuaries 18:285–314. doi:10.2307/1352640

    Article  Google Scholar 

  • Burkart MR, James DE (1999) Agricultural-nitrogen contributions to hypoxia in the Gulf of Mexico. J Environ Qual 28:850–859

    Google Scholar 

  • Caraco NF, Cole JJ (1999) Human impact on nitrate export: an analysis using major world rivers. Ambio 28:167–170

    Google Scholar 

  • Carpenter SR, Caraco NF, Correll DL, Howarth RW, Sharpley AN, Smith VH (1998) Nonpoint pollution of surface waters with phosphorus and nitrogen. Ecol Appl 8:559–568. doi:10.1890/1051-0761(1998)008[0559:NPOSWW]2.0.CO;2

    Article  Google Scholar 

  • CASTNET (2006) Clean Air Status and Trends Network (CASTNET). U.S. Environmental Protection Agency, http://www.epa.gov/castnet/. Cited 01 Aug 2007

  • Coale FJ, Meisinger JJ, Wiebold WJ (1985) Effects of plant-breeding and selection on yields and nitrogen-fixation in soybeans under 2 soil-nitrogen regimes. Plant Soil 86:357–367. doi:10.1007/BF02145456

    Article  Google Scholar 

  • Cohn TA, Delong LL, Gilroy EJ, Hirsch RM, Wells DK (1989) Estimating constituent loads. Water Resour Res 25:937–942. doi:10.1029/WR025i005p00937

    Article  Google Scholar 

  • Daly C, Gibson W (2002a) 103-Year High-Resolution Precipitation Climate Data Set for the Conterminous United States Spatial Climate Analysis Service, Corvallis, OR

  • Daly C, Gibson W (2002b) 103-Year High-Resolution Temperature Climate Data Set for the Conterminous United States Spatial Climate Analysis Service, Corvallis, OR

  • David MB, Gentry LE (2000) Anthropogenic inputs of nitrogen and phosphorus and riverine export for Illinois, USA. J Environ Qual 29:494–508

    Google Scholar 

  • David MB, Gentry LE, Kovacic DA, Smith KM (1997) Nitrogen balance in and export from an agricultural watershed. J Environ Qual 26:1038–1048

    Google Scholar 

  • Galloway JN, Howarth RW, Michaels AF, Nixon SW, Prospero JM, Dentener FJ (1996) Nitrogen and phosphorus budgets of the North Atlantic Ocean and its watershed. Biogeochemistry 35:3–25. doi:10.1007/BF02179823

    Article  Google Scholar 

  • Galloway JN, Cowling EB, Seitzinger SP, Socolow RH (2002) Reactive nitrogen: too much of a good thing? Ambio 31:60–63. doi:10.1639/0044-7447(2002)031[0060:RNTMOA]2.0.CO;2

    Article  Google Scholar 

  • Galloway JN, Aber JD, Erisman JW, Seitzinger SP, Howarth RW, Cowling EB, Cosby BJ (2003) The nitrogen cascade. Bioscience 53:341–356. doi:10.1641/0006-3568(2003)053[0341:TNC]2.0.CO;2

    Article  Google Scholar 

  • Gentry LE, David MB, Smith KM, Kovacic DA (1998) Nitrogen cycling and tile drainage nitrate loss in a corn/soybean watershed. Agric Ecosyst Environ 68:85–97. doi:10.1016/S0167-8809(97)00139-4

    Article  Google Scholar 

  • Goebes MD, Strader R, Davidson C (2003) An ammonia emission inventory for fertilizer application in the United States. Atmos Environ 37:2539–2550. doi:10.1016/S1352-2310(03)00129-8

    Article  Google Scholar 

  • Goolsby DA, Battaglin WA, Lawrence GB, Artz RS, Aulenbach BT, Hooper RP, Keeney DR, Stensland GJ (1999) Flux and sources of nutrients in the Mississippi-Atchafalaya River Basin: topic 3 report for the integrated assessment on hypoxia in the Gulf of Mexico. NOAA Coastal Ocean Program, Silver Spring

    Google Scholar 

  • Han H (2007) Nutrient loading to Lake Michigan: A mass balance assessment. Dissertation, University of Michigan

  • Howarth RW, Billen G, Swaney D, Townsend A, Jaworski N, Lajtha K, Downing JA, Elmgren R, Caraco N, Jordan T, Berendse F, Freney J, Kudeyarov V, Murdoch P, Zhu ZL (1996) Regional nitrogen budgets and riverine N&P fluxes for the drainages to the North Atlantic Ocean: natural and human influences. Biogeochemistry 35:75–139. doi:10.1007/BF02179825

    Article  Google Scholar 

  • Howarth RW, Swaney DP, Boyer EW, Marino R, Jaworski N, Goodale C (2006) The influence of climate on average nitrogen export from large watersheds in the northeastern United States. Biogeochemistry 79:163–186. doi:10.1007/s10533-006-9010-1

    Article  Google Scholar 

  • Jordan TE, Weller DE (1996) Human contributions to terrestrial nitrogen flux. Bioscience 46:655–664. doi:10.2307/1312895

    Article  Google Scholar 

  • Kellogg RL, Lander CH, Moffitt D, Noel G (2000) Manure nutrients relative to the capacity of cropland and pastureland to assimilate nutrients: spatial and temporal trends for the United States. U.S. Department of Agriculture, Natural Resources Conservation Service, Kansas

    Google Scholar 

  • Lander CH, Moffitt D, Alt K (1998) Nutrients available from livestock manure relative to crop growth requirements. U.S. Department of Agriculture, Natural Resources Conservation Service, Washington, DC

    Google Scholar 

  • McIsaac GF, Hu XT (2004) Net N input and riverine N export from Illinois agricultural watersheds with and without extensive tile drainage. Biogeochemistry 70:251–271. doi:10.1023/B:BIOG.0000049342.08183.90

    Article  Google Scholar 

  • McIsaac GF, David MB, Gertner GZ, Goolsby DA (2002) Relating net nitrogen input in the Mississippi River basin to nitrate flux in the lower Mississippi River: a comparison of approaches. J Environ Qual 31:1610–1622

    Article  Google Scholar 

  • Meisinger JJ, Randall GW (1991) Estimating nitrogen budgets for soil-crop systems. In: Follett RF (ed) Managing nitrogen for groundwater quality and farm profitability. Soil Science Society of America, Madison, pp 85–124

    Google Scholar 

  • MRLC (1995) Multi-Resolution Land Characteristics (MRLC) consortium documentation notebook; national land cover database. http://www.epa.gov/mrlc/nlcd.html. Cited 12 Dec 2007

  • Muthuramu K, Shepson PB, Bottenheim JW, Jobson BT, Niki H, Anlauf KG (1994) Relationships between organic nitrates and surface ozone destruction during polar sunrise experiment 1992. J Geophys Res 99:25369–25378. doi:10.1029/94JD01309

    Article  Google Scholar 

  • NADP (2006) National Atmospheric Deposition Program (NADP) online database. http://nadp.sws.uiuc.edu/nadpdata. Cited 22 Feb 2007

  • Neff JC, Holland EA, Dentener FJ, McDowell WH, Russell KM (2002) The origin, composition and rates of organic nitrogen deposition: a missing piece of the nitrogen cycle? Biogeochemistry 57:99–136. doi:10.1023/A:1015791622742

    Article  Google Scholar 

  • NRC (1984) Nutrient requirements of beef cattle. National Academy Press, Washington, DC

    Google Scholar 

  • NRC (1985) Nutrient requirements of sheep. National Academy of Press, Washington, DC

    Google Scholar 

  • NRC (1993) Nitrogen in the soil-crop system. In: Soil and water quality: an agenda for agriculture crop. National Academy Press, Washington, DC, http://books.nap.edu/openbook.php?record_id=2132&page=237. Cited 13 Dec 2007

  • NRC (1998) Nutrient requirements of swine. National Academy Press, Washington, DC

    Google Scholar 

  • Rabalais NN, Turner RE, Wiseman WJ (2002) Gulf of Mexico hypoxia, aka “The dead zone”. Annu Rev Ecol Syst 33:235–263. doi:10.1146/annurev.ecolsys.33.010802.150513

    Article  Google Scholar 

  • Roberts JM (1990) The atmospheric chemistry of organic nitrates. Atmos Environ 24:243–287

    Article  Google Scholar 

  • Scavia D, Justic D, Bierman VJ (2004) Reducing hypoxia in the Gulf of Mexico: advice from three models. Estuaries 27:419–425. doi:10.1007/BF02803534

    Article  Google Scholar 

  • Schaefer SC, Alber M (2007) Temperature controls a latitudinal gradient in the proportion of watershed nitrogen exported to coastal ecosystems. Biogeochemistry 85:333–346. doi:10.1007/s10533-007-9144-9

    Article  Google Scholar 

  • SPSS Inc (2007) SPSS 15.0. Chicago, IL

  • Stevenson FJ (1994) Humus chemistry: genesis, composition, reactions. Wiley, New York

    Google Scholar 

  • TFI (1992–2002) Commercial fertilizers report. The Fertilizer Institute, Washington, DC

  • Tidwell VC, Passell HD, Conrad SH, Thomas RP (2004) System dynamics modeling for community-based water planning: application to the middle Rio Grande. Aquat Sci 66:357–372. doi:10.1007/s00027-004-0722-9

    Article  Google Scholar 

  • U.S. Department of Agriculture (1994) National cooperative soil survey and supersedes the State Soil Geographic (STATSGO) dataset USDA—Natural Resources Conservation Service, Lincoln, NE

  • U.S. Bureau of the Census (1995) 1992 Census of agriculture. Geographic area series 1B. U.S. summary and county level data. U.S. Dept. of Commerce Bureau of the Census Data User Services Division, Washington, DC

    Google Scholar 

  • U.S. Department of Agriculture (2005) USDA national nutrient database for standard reference, release 18. Washington, DC, http://www.nal.usda.gov/fnic/foodcomp/Data/SR18/sr18.html, Cited Dec 2006

  • U.S. Department of Agriculture (2006) U.S. food supply: nutrients and other food components, 1909 to 2004. USDA, Economic Research Service, Washington, DC

    Google Scholar 

  • USDA/NASS (2006) National Agricultural Statistics Service Histrorocal Data- quick stats, U.S. & all states data—Slaughter USDA National Agricultural Statistics Service http://www.nass.usda.gov/QuickStats/Create_Federal_All.jsp. Cited 03 Sept 2007

  • U.S. EPA (1998) 1:250,000 scale quadrangles of landuse/landcover GIRAS spatial data of CONUS in BASINS Environmental Protection Agency, Office of Water (OST), Reston, VA

  • U.S. EPA (2000) National air pollutant emission trends, 1900–1998. Office of Air Quality Planning and Standards, Research Triangle Park

    Google Scholar 

  • U.S. EPA (2003) National air quality and emissions trends report, 2003 special studies edition. Office of Air Quality Planning and Standards, Research Triangle Park

    Google Scholar 

  • U.S. EPA (2005) National Emission Inventory (NEI)—Ammonia emissions from animal agricultural operations, revised draft report. U.S. EPA, Technology Transfer Network Research Triangle Park, NC

  • Van Aardenne JA, Dentener FJ, Olivier JGJ, Goldewijk C, Lelieveld J (2001) A 1 degrees x 1 degrees resolution data set of historical anthropogenic trace gas emissions for the period 1890–1990. Global Biogeochem Cycles 15:909–928. doi:10.1029/2000GB001265

    Article  Google Scholar 

  • Van Breemen N, Boyer EW, Goodale CL, Jaworski NA, Paustian K, Seitzinger SP, Lajtha K, Mayer B, Van Dam D, Howarth RW, Nadelhoffer KJ, Eve M, Billen G (2002) Where did all the nitrogen go? Fate of nitrogen inputs to large watersheds in the northeastern USA. Biogeochemistry 57:267–293. doi:10.1023/A:1015775225913

    Article  Google Scholar 

  • Van Horn HH (1998) Factors affecting manure quantity, quality, and use. In: Council TAN (ed) Proceedings of the mid south ruminant nutrition conference, Dallas-Ft. Worth, 1998

  • Van Horn HH, Newton GL, Kunkle WE (1996) Ruminant nutrition from an environmental perspective: factors affecting whole-farm nutrient balance. J Anim Sci 74:3082–3102

    Google Scholar 

  • Vitousek PM, Aber JD, Howarth RW, Likens GE, Matson PA, Schindler DW, Schlesinger WH, Tilman DG (1997) Human alteration of the global nitrogen cycle: sources and consequences. Ecol Appl 7:737–750

    Google Scholar 

Download references

Acknowledgments

This work was supported by grants and a fellowship from the University of Michigan School of Natural Resources and Environment and a Rackham Discretionary Fund. We are grateful to Dan Brown, George Kling, Don Scavia, and Nathan Bosch for their insights and comments and to two anonymous reviewers for their very helpful comments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Haejin Han.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Han, H., Allan, J.D. Estimation of nitrogen inputs to catchments: comparison of methods and consequences for riverine export prediction. Biogeochemistry 91, 177–199 (2008). https://doi.org/10.1007/s10533-008-9279-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10533-008-9279-3

Keywords

Navigation