Skip to main content
Log in

Effects of bioaugmentation on enhanced reductive dechlorination of 1,1,1-trichloroethane in groundwater: a comparison of three sites

  • Original Article
  • Published:
Biodegradation Aims and scope Submit manuscript

Abstract

Microcosm studies investigated the effects of bioaugmentation with a mixed Dehalococcoides (Dhc)/Dehalobacter (Dhb) culture on biological enhanced reductive dechlorination for treatment of 1,1,1-trichloroethane (TCA) and chloroethenes in groundwater at three Danish sites. Microcosms were amended with lactate as electron donor and monitored over 600 days. Experimental variables included bioaugmentation, TCA concentration, and presence/absence of chloroethenes. Bioaugmented microcosms received a mixture of the Dhc culture KB-1 and Dhb culture ACT-3. To investigate effects of substrate concentration, microcosms were amended with various concentrations of chloroethanes (TCA or monochloroethane [CA]) and/or chloroethenes (tetrachloroethene [PCE], trichloroethene [TCE], or 1,1-dichloroethene [1,1-DCE]). Results showed that combined electron donor addition and bioaugmentation stimulated dechlorination of TCA and 1,1-dichloroethane (1,1-DCA) to CA, and dechlorination of PCE, TCE, 1,1-DCE and cDCE to ethane. Dechlorination of CA was not observed. Bioaugmentation improved the rate and extent of TCA and 1,1-DCA dechlorination at two sites, but did not accelerate dechlorination at a third site where geochemical conditions were reducing and Dhc and Dhb were indigenous. TCA at initial concentrations of 5 mg/L inhibited (i.e., slowed the rate of) TCA dechlorination, TCE dechlorination, donor fermentation, and methanogenesis. 1 mg/L TCA did not inhibit dechlorination of TCA, TCE or cDCE. Moreover, complete dechlorination of PCE to ethene was observed in the presence of 3.2 mg/L TCA. In contrast to some prior reports, these studies indicate that low part-per million levels of TCA (<3 mg/L) in aquifer systems do not inhibit dechlorination of PCE or TCE to ethene. In addition, the results show that co-bioaugmentation with Dhc and Dhb cultures can be an effective strategy for accelerating treatment of chloroethane/chloroethene mixtures in groundwater, with the exception that all currently known Dhc and Dhb cultures cannot treat CA.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Adamson DT, Parkin GF (2000) Impact of mixtures of chlorinated aliphatic hydrocarbons on a high-rate, tetrachloroethene-dechlorinating enrichment culture. Environ Sci Technol 34(10):1959–1965

    Article  CAS  Google Scholar 

  • Benson EN, Hunter JV (1976) Comparative effects of halogenated hydrocarbon solvents on waste disposal practices. Proceedings of the 31st Annual Purdue Industrial Waste Conference, Lafayette, pp 614–624

    Google Scholar 

  • Broholm MM, Hunkeler D, Tuxen N, Jeannottat S, Scheutz C (2013) Stable carbon isotope analysis to distinguish biotic and abiotic degradation of 1,1,1-trichloroethane in aquifer sediments. Chemosphere (accepted)

  • Bouwer EJ (1994) Bioremediation of chlorinated solvents using alternate electron acceptors. In: Norris RD et al (eds) Handbook of bioremediation. Lewis Publishers, Boca Raton, pp 149–175

    Google Scholar 

  • Butler EC, Hayes KF (1999) Kinetics of the transformation of trichloroethylene and tetrachloroethylene by iron sulfide. Environ Sci Technol 33(12):2021–2027

    Article  CAS  Google Scholar 

  • Butler EC, Hayes KF (2000) Kinetics of the transformation of halogenated aliphatic compounds by iron sulfide. Environ Sci Technol 34(3):422–429

    Article  CAS  Google Scholar 

  • Cervini-Silva J, Kosta JE, Larson RA, Stucki JW, Wu J (2003) Dehydrochlorination of 1,1,1-trichloroethane and pentochloroethane by microbially reduced ferruginous smectite. Environ Toxicol Chem 22(5):1046–1050

    Article  CAS  PubMed  Google Scholar 

  • Chan WM, Grostern A, Loeffler FE, Edwards EE (2011) Quantifying the effects of 1,1,1-trichloroethane and 1,1-dichloroethane on chlorinated ethene reductive dehalogenases. Environ Sci Technol 45:9693–9702

    Article  CAS  PubMed  Google Scholar 

  • Cline PV, Delfino JJ (1989) Effect of subsurface sediment on hydrolysis of haloalkanes and epoxides. In: Larson RA (ed) Biohazards of drinking water treatment. Lewis Publishers, Chelsea, pp 47–56

    Google Scholar 

  • Dennis P, Duchesneau MN, Workman R, Baddour FR (2007) Bioaugmentation for combined 1,1,1-Trichloroethane and chlorinated ethene remediation. Presentation at the Association for Environmental Health and Sciences (AEHS) 17th Annual Meeting and West Coast Conference on Soils, Sediments, and Water, San Diego, 19–22, March 2007

  • Duhamel M, Edwards EA (2006) Microbial composition of chlorinated ethene-degrading cultures dominated by Dehalococcoides. FEMS Microbiol Ecol 58:538–549

    Article  CAS  PubMed  Google Scholar 

  • Duhamel M, Wehr SD, Yu L, Rizvi H, Seepersad D, Dworatzek S, Cox EE, Edwards EA (2002) Comparison of anaerobic dechlorinating enrichment cultures maintained on tetrachloroethene, trichloroethene, cis-dichloroethene, and vinyl chloride. Wat Res 36:4193–4202

    Article  CAS  Google Scholar 

  • Duhamel M, Mo K, Edwards EA (2004) Characterization of a highly enriched Dehalococcoides-containing culture that grows on vinyl chloride and trichloroethene. Appl Environ Microbiol 70(9):5538–5545

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Ellis DE, Lutz EJ, Odom JM, Buchanan RJ, Bartlett CL, Lee MD, Harkness MR, Deweerd KA (2000) Bioaugmentation for accelerated in situ anaerobic bioremediation. Environ Sci Technol 34(11):2254–2260

    Article  CAS  Google Scholar 

  • Gander JW, Parkin GF, Scherer MM (2002) Kinetics of 1,1,1-trichloroethane transformation by iron sulfide and methanogenic consortium. Environ Sci Technol 36(21):4540–4546

    Article  CAS  PubMed  Google Scholar 

  • Grostern A, Edwards EA (2006) A 1,1,1-trichloroethane-degrading anaerobic mixed microbial culture enhances biotransformation of mixtures of chlorinated ethenes and ethanes. Appl Environ Microbiol 72(12):7849–7856

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Grostern A, Chan W, Edwards EA (2009) 1,1,1-Trichloroethane and 1,1-dichloroethane reductive dechlorination kinetics and co-contaminant effects in a Dehalobacter-containing mixed culture. Environ Sci Technol 43(17):6799–6807

    Article  CAS  PubMed  Google Scholar 

  • Haag WR, Mill T (1988) Effect of a subsurface sediment on hydrolysis of haloalkanes and epoxides. Environ Sci Technol 22(6):658–663

    Article  CAS  Google Scholar 

  • International Agency for Research on Cancer (IARC) (2010) Agents classified by the IARC monographs, volumes 1–100. http://monographs.iarc.fr/ENG/Classification/ClassificationsAlphaOrder.pdf. Accessed 30 Aug 2012

  • Keuning S, Janssen DB, Witholt B (1985) Purification and characterization of hydrolytic haloalkane dehalogenase from Xanthobacter autotrophicus GJ10. J Bacteriol 163(2):635–639

    CAS  PubMed Central  PubMed  Google Scholar 

  • Klecka GM, Gonsior SJ, Markham DA (1990) Biological transformations of 1,1,1-trichloroethane in subsurface soils and ground water. Environ Toxicol Chem 9(12):1437–1451

    Article  CAS  Google Scholar 

  • Laughton PM, Robertson RE (1959) Solvolysis in hydrogen and deuterium oxide. 3. Alkyl halides. Can J Chem-Revue Canadienne de Chimie 37:1491–1497

    Article  CAS  Google Scholar 

  • Lemming G, Hauschild MZ, Chambon J, Binning PJ, Bulle C, Margni M, Bjerg PL (2010) Environmental impacts of remediation of a trichloroethene-contaminated site: life cycle assessment of remediation alternatives. Environ Sci Technol 44(23):9163–9169

    Article  CAS  PubMed  Google Scholar 

  • Lemming G, Chambon JC, Binning PJ, Bjerg PL (2012) Is there an environmental benefit from remediation of a contaminated site? Combined assessments of the risk reduction and life cycle impact of remediation. J Env Management 112:392–403

    Article  CAS  Google Scholar 

  • Major DW, McMaster ML, Cox EE, Edwards EA, Dworatzek SM, Hendrickson ER, Starr MG, Payne JA, Buonamici LW (2002) Field demonstration of successful bioaugmentation to achieve dechlorination of tetrachloroethene to ethene. Environ Sci Technol 36(23):5106–5116

    Article  CAS  PubMed  Google Scholar 

  • Maymó-Gatell X, Anguish T, Zinder SH (1999) Reductive dechlorination of chlorinated ethenes and 1,2-dichloroethane by “Dehalococcoides ethenogenes” 195. Appl Environ Microbiol 65(7):3108–3113

    PubMed Central  PubMed  Google Scholar 

  • Scheutz C, Durant ND, Dennis P, Hansen MH, Jørgensen T, Jakobsen R, Cox EE, Bjerg PL (2008) Concurrent ethene generation and growth of Dehalococcoides containing vinyl chloride reductive dehalogenase genes during an enhanced reductive dechlorination pilot test. Environ Sci Technol 42(24):9302–9309

    Article  CAS  PubMed  Google Scholar 

  • Scheutz C, Broholm MM, Durant ND, Weeth EB, Jørgensen T, Dennis P, Jacobsen CS, Cox EE, Chambon JC, Bjerg PL (2010) A field evaluation of biological enhanced reductive dechlorination of chloroethenes in clayey till. Environ Sci Technol 44(13):5134–5141

    Article  CAS  PubMed  Google Scholar 

  • Scheutz C, Durant ND, Hansen MH, Bjerg PL (2011) Natural and enhanced anaerobic degradation of 1,1,1-trichloroethane and its degradation products in the subsurface—A critical review. Wat Res 45:2701–2723

    Article  CAS  Google Scholar 

  • Scholtz R, Schmuckle A, Cook AM, Leisinger T (1987) Degradation of eighteen 1-monohaloalkanes by Arthrobacter sp. Strain HA1. J Gen Microbiol 133:267–274

    CAS  Google Scholar 

  • Sun BL, Griffin BM, Ayala-del-Rio HL, Hashsham SA, Tiedje JM (2002) Microbial dehalorespiration with 1,1,1-trichloroethane. Science 298:1023–1025

    Article  CAS  PubMed  Google Scholar 

  • Vargas C, Ahlert RC (1987) Anaerobic degradation of chlorinated solvents. Res J Water Pollut Control Fed 59(11):964–968

    CAS  Google Scholar 

  • Vogel TM (1994) Natural bioremediation of chlorinated solvents. In: Norris RD et al (eds) Handbook of bioremediation. Lewis Publishers, Boca Raton, pp 201–224

    Google Scholar 

  • Vogel TM, McCarty PL (1987) Abiotic and biotic transformations of 1,1,1-trichloroethane under methanogenic conditions. Environ Sci Technol 21(12):1208–1213

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was funded by the former Copenhagen County (now the Capital Region of Denmark), and REMTEC, Innovative REMediation and assessment TEChnologies for contaminated soil and groundwater, Danish Council for Strategic Research, contract 2104-07-0009. The authors thank Phil Dennis of SiREM for providing helpful comments on this manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Neal D. Durant.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 1186 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Scheutz, C., Durant, N.D. & Broholm, M.M. Effects of bioaugmentation on enhanced reductive dechlorination of 1,1,1-trichloroethane in groundwater: a comparison of three sites. Biodegradation 25, 459–478 (2014). https://doi.org/10.1007/s10532-013-9674-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10532-013-9674-x

Keywords

Navigation