Skip to main content
Log in

Dual augmentation for aerobic bioremediation of MTBE and TCE pollution in heavy metal-contaminated soil

  • Original Paper
  • Published:
Biodegradation Aims and scope Submit manuscript

Abstract

In this work we isolated from soil and characterized several bacterial strains capable of either resisting high concentrations of heavy metals (Cd2+ or Hg2+ or Pb2+) or degrading the common soil and groundwater pollutants MTBE (methyl-tert-butyl ether) or TCE (trichloroethylene). We then used soil microcosms exposed to MTBE (50 mg/l) or TCE (50 mg/l) in the presence of one heavy metal (Cd 10 ppm or Hg 5 ppm or Pb 50 or 100 ppm) and two bacterial isolates at a time, a degrader plus a metal-resistant strain. Some of these two-membered consortia showed degradation efficiencies well higher (49–182% higher) than those expected under the conditions employed, demonstrating the occurrence of a synergetic relationship between the strains used. Our results show the efficacy of the dual augmentation strategy for MTBE and TCE bioremediation in the presence of heavy metals.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Achten C, Püttmann W (2001) Method for determination of methyl tert-butyl ether in gasoline by gas chromatography. J Chromatogr A 910:377–383. doi:10.1016/S0021-9673(00)01220-6

    Article  PubMed  CAS  Google Scholar 

  • Adebusoye SA, Picardal FW, Ilori MO, Amund OO, Fuqua C, Grindle N (2007) Aerobic degradation of di- and trichlorobenzenes by two bacteria isolated from polluted tropical soils. Chemosphere 66:1939–1946. doi:10.1016/j.chemosphere.2006.07.074

    Article  PubMed  CAS  Google Scholar 

  • ATSDR (2003) – Agency for Toxic Substances & Disease Registry, Department of Health and Human Services, USA. http://www.atsdr.cdc.gov/NER/tce.html

  • Aulenta F, Bianchi A, Majone M, Papini MP, Potalivo M, Tandoi V (2005) Assessment of natural or enhanced in situ bioremediation at a chlorinated solvent-contaminated aquifer in Italy: a microcosm study. Environ Int 31:185–190. doi:10.1016/j.envint.2004.09.014

    Article  PubMed  CAS  Google Scholar 

  • Bowman JP, Jimenez L, Rosario I, Hazen TC, Sayler GS (1993) Characterization of the methanotrophic bacterial community present in the tricholoroethylene-contaminated subsurface groundwater site. Appl Environ Microbiol 59:2380–2387

    PubMed  CAS  Google Scholar 

  • Brusseau GA, Tsien H-C, Hanson RS, Wackett LP (1990) Optimization of trichloroethylene oxidation by methanotrophs and the use of a colorimetric assay to detect soluble methane monooxygenase activity. Biodegradation 1:19–29. doi:10.1007/BF00117048

    Article  PubMed  CAS  Google Scholar 

  • Commission of the European Communities (1986) Council directive on the protection of the environment, and in particular of the soil, when sewage sludge is used in agriculture. Off J Eur Communities L181 Annex 1A:10

    Google Scholar 

  • De Marco P, Pacheco CC, Figueiredo AR, Moradas-Ferreira P (2004) Novel pollutant-resistant methylotrophic bacteria for use in bioremediation. FEMS Microbiol Lett 234:75–80

    Article  PubMed  Google Scholar 

  • DiSpirito AA, Gulledge J, Shiemke AK, Murrell JC, Lidstrom ME, Krema CL (1991) Trichloroethylene oxidation by the membrane-associated methane monooxygenase in type I, type II and type X methanotrophs. Biodegradation 2:151–164. doi:10.1007/BF00124489

    Article  CAS  Google Scholar 

  • Fayolle F, François A, Garnier L, Godefroy D, Mathis H, Piveteau P, Monot F (2003) Limitations in MTBE biodegradation. Oil Gas Sci Technol 58:497–504. doi:10.2516/ogst:2003033

    Article  CAS  Google Scholar 

  • Jézéquel K, Perrin J, Lebeau T (2005) Bioaugmentation with Bacillus sp. to reduce the phytoavailable Cd of an agricultural soil: comparison of free and immobilized microbial inocula. Chemosphere 59:1323–1331. doi:10.1016/j.chemosphere.2004.11.050

    Article  PubMed  CAS  Google Scholar 

  • Kalyuzhnaya MG, De Marco P, Bowerman S, Pacheco CC, Lara JC, Lidstrom ME, Chistoserdova L (2006) Methyloversatilis universalis, gen. nov., sp. nov., a new taxon within the Betaproteobacteria represented by three methylotrophic isolates. Int J Syst Evol Microbiol 56:2517–2522. doi:10.1099/ijs.0.64422-0

    Article  PubMed  CAS  Google Scholar 

  • Kelly DP, Baker SC, Trickett J, Davey M, Murrell JC (1994) Methanesulphonate utilization by a novel methylotrophic bacterium involves an unusual monooxygenase. Microbiology 140:1419–1426

    Article  CAS  Google Scholar 

  • Kuroda K, Shibasaki S, Ueda M, Tanaka A (2001) Cell surface-engineered yeast displaying a histidine oligopeptide (hexa-His) has enhanced adsorption of and tolerance to heavy metal ions. Appl Microbiol Biotechnol 57:697–701. doi:10.1007/s002530100813

    Article  PubMed  CAS  Google Scholar 

  • Lane DJ (1991) 16S/23S rRNA sequencing. In: Stackebrandt E, Goodfellow M (eds) Nucleic acid techniques in bacterial systematics. Wiley, New York, pp 115–175

    Google Scholar 

  • Lee W, Wood TK, Chen W (2006) Engineering TCE-degrading rhizobacteria for heavy metal accumulation and enhanced TCE degradation. Biotechnol Bioeng 95(3):399–403. doi:10.1002/bit.20950

    Article  PubMed  CAS  Google Scholar 

  • Olaniran A, Pillay D, Pillay B (2006) Biostimulation and biaugmentation enhances aerobic biodegradation of dichloroethenes. Chemosphere 63:600–608. doi:10.1016/j.chemosphere.2005.08.027

    Article  PubMed  CAS  Google Scholar 

  • Roane TM, Josephson KL, Pepper IL (2001) Dual-biaugmentation strategy to enhance remediation of cocontaminated soil. Appl Environ Microbiol 67:3208–3215. doi:10.1128/AEM.67.7.3208-3215.2001

    Article  PubMed  CAS  Google Scholar 

  • Sandrin TR, Maier RM (2003) Impact of metals on the biodegradation of organic pollutants. Environ Health Perspect 111:1093–1101

    PubMed  CAS  Google Scholar 

  • Shields MS, Reagin MJ, Gerger RR, Campbell R, Somerville C (1995) TOM, a new aromatic degradative plasmid from Burkholderia (Pseudomonas) cepacia G4. Appl Environ Microbiol 61:1352–1356

    PubMed  CAS  Google Scholar 

  • USEPA (1997) Drinking water advisory: consumer acceptability advice and health effects analysis on methyl tertiary butyl ether (MTBE). EPA/822/F-97/008. December 1997. Office of water, Washington, DC, USA

Download references

Acknowledgments

We wish to acknowledge funding form the Portuguese Science and Technology Foundation, research project AMB/57353/2004 and personal grant to PDM SFRH/BPD/20577/2004 funded by POCI2010, co-funded by FEDER. We would like to thank Pedro Moradas-Ferreira, Catarina Pacheco, Ricardo Hugo Pires (IBMC), Ana Rita Carvalho and Etelvina Figueira (University of Aveiro) for their support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P. De Marco.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Fernandes, V.C., Albergaria, J.T., Oliva-Teles, T. et al. Dual augmentation for aerobic bioremediation of MTBE and TCE pollution in heavy metal-contaminated soil. Biodegradation 20, 375–382 (2009). https://doi.org/10.1007/s10532-008-9228-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10532-008-9228-9

Keywords

Navigation