Skip to main content

Advertisement

Log in

The fine-scale utilization of forest edges by mammalian mesopredators related to patch size and conservation issues in Central European farmland

  • Original Paper
  • Published:
Biodiversity and Conservation Aims and scope Submit manuscript

Abstract

The marked negative impact of habitat fragmentation and the edge effect on many populations of bird species is a recent major concern in conservation biology. Here, we focus on the edge effect in different sized forest patches in Central European farmland. In particular, we tested whether the distribution of mammalian mesopredators is related to fragment size and distance to habitat edge, and whether the contribution of these factors is additive or interactive. To assess fine-scale utilization of forest edges, we established transects of four scent stations at different distances from forest edges into the interior (0, 25, 50, 100 m) in 146 forest fragments of variable patch size (3.2–5099.6 ha) from May to June, 2008–2009. This large sample size allowed us to perform detailed analyses separately for all detected species. Our findings confirm that mammalian mesopredators strongly prefer habitat edges and small forest fragments. The probability of occurrence tended to decrease with increasing distance from the edge for all seven carnivore species detected. The carnivores’ occurrence was also negatively correlated with forest fragment area. All detected species tended to prefer small fragments, with the exception of the Eurasian badger (showing the reverse but non-significant pattern) and the red fox (no effect of fragment size). In addition, the non-significant interaction between fragment size and distance to edge suggests that both of these factors contribute independently and additively to mesopredator-mediated effects on biota in a fragmented landscape.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Albrecht T (2004) Edge effect in wetland-arable land boundary determines nesting success of scarlet rosefinches (Carpodacus erythrinus) in the Czech Republic. Auk 121:361–371

    Article  Google Scholar 

  • Albrecht T, Hořák D, Kreisinger J et al (2006) Factors determining pochard nest predation along a wetland gradient. J Wildl Manag 70:784–791

    Article  Google Scholar 

  • Anděra M, Horáček I (2005) Poznáváme naše savce [Getting to know our mammals]. Sobotáles, Praha

    Google Scholar 

  • Andrén H (1992) Corvid density and nest predation in relation to forest fragmentation: a landscape perspective. Ecology 73:794–804

    Article  Google Scholar 

  • Andrén H (1994) Effects of habitat fragmentation on birds and mammals in landscapes with different proportions of suitable habitat: a review. Oikos 71:355–366

    Article  Google Scholar 

  • Andrén H (1995) Effects of landscape composition on predation rates at habitat edges. In: Hansson L, Fahrig L, Merriam G (eds) Mosaic landscapes and ecological processes. Chapman and Hall, London, pp 225–255

    Chapter  Google Scholar 

  • Andrén H, Angelstam P (1988) Elevated predation rates as an edge effect in habitat islands: experimental evidence. Ecology 69:544–547

    Article  Google Scholar 

  • Angelstam P (1986) Predation on ground-nesting birds’ nests in relation to predator densities and habitat edge. Oikos 47:365–373

    Article  Google Scholar 

  • Austen MJW, Francis CM, Burke DM et al (2001) Landscape context and fragmentation effects on forest birds in Southern Ontario. Condor 103:701–714

    Article  Google Scholar 

  • Barratt DG (1997) Predation by house cats, Felis catus (L.), in Canberra, Australia. I. Prey composition and preference. Wildl Res 24:263–277

    Article  Google Scholar 

  • Batáry P, Báldi A (2004) Evidence of an edge effect on avian nest success. Conserv Biol 18:389–400

    Article  Google Scholar 

  • Bates D, Maechler M, Dai B (2011) Lme4: linear mixed-effects models using S4 classes. http://lme4.r-forge.rproject.org

  • Bayne EM, Hobson KA (1997) Comparing the effects of landscape fragmentation by forestry and agriculture on predation of artificial nests. Conserv Biol 11:1418–1429

    Article  Google Scholar 

  • Bender DJ, Contreras TA, Fahrig L (1998) Habitat loss and population decline: a meta-analysis of the patch size effect. Ecology 79:517–533

    Article  Google Scholar 

  • Bolger DT et al (2001) Use of corridor-like landscape structures by bird and small mammal species. Biol Conserv 102:213–224

    Article  Google Scholar 

  • Bollinger EK, Peak RG (1995) Depredation of artificial avian nests: a comparison of the forest-field and forest-lake edges. Am Midl Nat 134:200–203

    Article  Google Scholar 

  • Bouchner M (2003) Stopy zvěře [Tracks of game]. Ottovo nakladatelství - Cesty, Praha

    Google Scholar 

  • Bowman GB, Hanis LD (1980) Effects of spatial heterogeneity on ground-nest depredation. J Wildl Manag 44:806–813

    Article  Google Scholar 

  • Brainerd SM, Rolstad J (2002) Habitat selection by Eurasian pine martens Martes martes in managed forests of southern boreal Scandinavia. Wildl Biol 8:289–297

    Google Scholar 

  • Brittingham MC, Temple SA (1983) Have cowbirds caused forest songbirds to decline? BioScience 33:31–35

    Article  Google Scholar 

  • Burger LD, Burger LW, Faaborg J (1994) Effects of prairie fragmentation on predation on artificial nests. J Wildl Manag 58:249–253

    Article  Google Scholar 

  • Buskirk SW, Powell RA (1994) Habitat ecology of fishers and American martens. In: Buskirk SW, Harestad AS, Raphael MG et al (eds) Martens, sables, and fishers: biology and conservation. Cornell University Press, Ithaca, pp 283–296

    Google Scholar 

  • Caryl FM (2008) Pine marten diet and habitat use within a managed coniferous forest. Dissertation, School of Biological & Environmental Science, University of Stirling

  • Cavallini P, Lovari S (1994) Home range, habitat selection and activity of the red fox in a Mediterranean coastal ecotone. Acta Theriol 39:279–287

    Google Scholar 

  • Červený J, Kamer J, Kholová H, Koubek P, Martínková N (2003) Encyklopedie myslivosti [Encyclopedia of game management]. Ottovo nakladatelství - Cesty, Praha

    Google Scholar 

  • Chalfoun AD, Thompson FR, Ratnaswamy MJ (2002) Nest predators and fragmentation: a review and meta-analysis. Conserv Biol 16:306–318

    Article  Google Scholar 

  • Crawley MJ (2007) The R book. Wiley, New York

    Book  Google Scholar 

  • Crooks KR (2002) Relative sensitivities of mammalian carnivores to habitat fragmentation. Conserv Biol 16:488–502

    Article  Google Scholar 

  • Crooks KR, Soulé ME (1999) Mesopredator release and avifaunal extinctions in a fragmented system. Nature 400:563–566

    Article  CAS  Google Scholar 

  • Davis SK (2004) Area sensitivity in grassland passerines: effects of patch size, patch shape, and vegetation structure on bird abundance and occurrence in southern Saskatchewan. Auk 121:1130–1145

    Article  Google Scholar 

  • Dijak WD, Thompson FR (2000) Landscape and edge effects on the distribution of mammalian predators in Missouri. J Wildl Manag 64:209–216

    Article  Google Scholar 

  • Donovan TM, Jones PW, Annand EM et al (1997) Variation in local-scale edge effects: mechanisms and landscape context. Ecology 78:2064–2075

    Article  Google Scholar 

  • Ewers RM, Didham RK (2007) The effect of fragment shape and species’ sensitivity to habitat edges on animal population size. Conserv Biol 4:926–936

    Article  Google Scholar 

  • Fahrig L (2003) Effects of habitat fragmentation on biodiversity. Annu Rev Ecol Syst 34:487–515

    Article  Google Scholar 

  • Fahrig L, Merriam G (1994) Conservation of fragmented populations. Conserv Biol 8:50–59

    Article  Google Scholar 

  • Flashpohler DJ, Temple SA, Rosenfield RN (2001) Species specific edge effects on nest success and breeding bird density in a forested landscape. Ecol Appl 11:32–46

    Article  Google Scholar 

  • Gates JE, Gysel LW (1978) Avian nest dispersion and fledging success in field-forest ecotones. Ecology 59:871–883

    Article  Google Scholar 

  • Gehring TM, Swihart RK (2003) Body size, niche breadth, and ecologically scaled responses to habitat fragmentation: mammalian predators in an agricultural landscape. Biol Conserv 109:283–295

    Article  Google Scholar 

  • Germain E, Benhamou S, Poulle ML (2008) Spatio-temporal sharing between the European wildcat, the domestic cat and their hybrids. J Zool 276:195–203

    Article  Google Scholar 

  • Hanski I (1998) Metapopulation dynamics. Nature 396:41–49

    Article  CAS  Google Scholar 

  • Hartley MJ, Hunter ML Jr (1998) A meta-analysis of forest cover, edge effects, and artificial nest predation rates. Conserv Biol 12:465–469

    Article  Google Scholar 

  • Herr J, Schley L, Roper TJ (2009) Socio-spatial organization of urban stone martens. J Zool 277:54–62

    Article  Google Scholar 

  • Hilty JA, Merenlender AM (2004) Use of riparian corridors and vineyards by mammalian predators in Northern California. Conserv Biol 18:126–135

    Article  Google Scholar 

  • Horn DJ, Phillips ML, Koford RR (2005) Landscape composition, patch size, and distance to edges: interactions affecting duck reproductive success. Ecol Appl 15:1367–1376

    Article  Google Scholar 

  • Hudec K (1983) Fauna ČSSR, vol. 28. Ptáci – Aves. Díl III, Academia, Praha

  • Jelbart JE, Ross PM, Connolly RM (2006) Edge effects and patch size in seagrass landscapes: an experimental test using fish. Mar Ecol Prog Ser 319:93–102

    Article  Google Scholar 

  • Johnson DDP, Macdonald DW, Dickman AJ (2000) An analysis and review of models of the sociobiology of the Mustelidae. Mammal Rev 30:171–196

    Article  Google Scholar 

  • Keyser AJ (2002) Nest predation in fragmented forests: landscape matrix by distance from edge interactions. Wilson Bull 114:186–191

    Article  Google Scholar 

  • Keyser AJ, Hill GE, Soehren EC (1998) Effects of forest fragment size, nest density, and proximity to edge on the risk of predation to ground-nesting passerine birds. Conserv Biol 12:986–994

    Article  Google Scholar 

  • Kurki S, Nikula A, Helle P, Lindén H (1998) Abundances of red fox and pine marten in relation to the composition of forest boreal landscapes. J Anim Ecol 67:874–886

    Article  Google Scholar 

  • Lahti DC (2001) The “edge effect on nest predation” hypothesis after twenty years. Biol Conserv 99:365–374

    Article  Google Scholar 

  • Larivière S (2003) Edge effects, predator movements, and the travel-lane paradox. Wildl Soc Bull 31:315–320

    Google Scholar 

  • Larivière S, Messier F (2000) Temporal patterns of predation of duck nests in the Canadian prairies. Am Midl Nat 146:339–344

    Article  Google Scholar 

  • Lenth BE, Knight RL, Brennan ME (2008) The effects of dogs on wildlife communities. Nat Areas J 28:218–227

    Article  Google Scholar 

  • Lindenmayer DB, Fischer J (2006) Habitat fragmentation and landscape change. Island Press, Washington

    Google Scholar 

  • Linhart SB, Knowlton FF (1975) Determining the relative abundance of coyotes by scent station lines. Wildl Soc Bull 3:119–124

    Google Scholar 

  • Major RE (1991) Identification of nest predators by photography, dummy eggs, and adhesive tape. Auk 108:190–195

    Google Scholar 

  • Malt JM, Lank DB (2009) Marbled murrelet nest predation risk in managed forest landscapes: dynamic fragmentation effects at multiple scales. Ecol Appl 19:1274–1287

    Article  PubMed  Google Scholar 

  • Mangas KG, Lozano J, Cabezas-Díaz S et al (2008) The priority value of scrubland habitats for carnivore conservation in Mediterranean ecosystems. Biodivers Conserv 17:43–51

    Article  Google Scholar 

  • Martin TE (1993) Nest predation among vegetation layers and habitat types: revising the dogmas. Am Nat 141:897–913

    Article  PubMed  CAS  Google Scholar 

  • Mazgajski TD, Rejt L (2005) Forest fragment size affects edge effect in nest predation—experiment with artificial nests. Pol J Ecol 53:233–242

    Google Scholar 

  • McWethy DB, Hansen AJ, Verschuyl JP (2009) Edge effects for songbirds vary with forest productivity. For Ecol Manag 257:665–678

    Article  Google Scholar 

  • Mitchell-Jones AJ, Amori G, Bogdanowicz W et al (1999) The atlas of European mammals. Academic Press, London, p 484

    Google Scholar 

  • Mortelliti A, Boitani L (2007) Evaluation of scent-station surveys to monitor the distribution of three European carnivore species (Martes foina, Meles meles, Vulpes vulpes) in a fragmented landscape. Mammal Biol 73:287–292

    Article  Google Scholar 

  • Mortelliti A, Amori G, Capizzi D et al (2010) Experimental design and taxonomic scope of fragmentation studies of European mammals: current status and future priorities. Mammal Rev 40:125–154

    Article  Google Scholar 

  • Murcia C (1995) Edge effects in fragmented forests: implications for conservation. Trends Ecol Evol 10:58–62

    Article  PubMed  CAS  Google Scholar 

  • Nesvadbová J, Zejda J (1984) The pine marten (Martes martes) in Bohemia and Moravia. Fol Zool 33:57–64

    Google Scholar 

  • Oehler JD, Litvaitis JA (1996) The role of spatial scale in understanding responses of medium-sized carnivores to forest fragmentation. Can J Zool 74:2070–2079

    Article  Google Scholar 

  • Ordeñana MA, Crooks KR, Boydston EE et al (2010) Effects of urbanization on carnivore species distribution and richness. J Mammal 91:1322–1331

    Article  Google Scholar 

  • Padyšáková E, Šálek M, Poledník L et al (2009) Removal of American mink increases the success of simulated nests in linear habitat. Wildl Biol 36:225–230

    Google Scholar 

  • Padyšáková E, Šálek M, Poledník L et al (2010) Predation on simulated duck nests in relation to nest density and landscape structure. Wildl Biol 37:597–603

    Google Scholar 

  • Panek M, Bresinski W (2002) Red fox Vulpes vulpes density and habitat use in a rural area of western Poland in the end of 1990s, compared with the turn of 1970s. Acta Theriol 47:433–442

    Article  Google Scholar 

  • Pardini R (2004) Effects of forest fragmentation on small mammals in an Atlantic Forest landscape. Biodivers Conserv 13:2567–2586

    Article  Google Scholar 

  • Parker TH, Stansberry BM, Becker CD et al (2005) Edge and area effects on the occurrence of migrant forest songbirds. Conserv Biol 19:1157–1167

    Article  Google Scholar 

  • Pasitschniak-Arts M, Messier F (1998) Effects of edges and habitats on small mammals in a prairie ecosystem. Can J Zool 76:2020–2025

    Article  Google Scholar 

  • Paton PWC (1994) The effect of edge on avian nest success—how strong is the evidence. Conserv Biol 8:17–26

    Article  Google Scholar 

  • Pereboom V, Mergey M, Villerette N et al (2008) Movement patterns, habitat selection, and corridor use of a typical woodland-dweller species, the European pine marten (Martes martes), in fragmented landscape. Can J Zool 86:983–991

    Article  Google Scholar 

  • Pita R, Mira A, Moreira F et al (2009) Influence of landscape characteristics on carnivore diversity and abundance in Mediterranean farmland. Agr Ecosyst Environ 132:57–65

    Article  Google Scholar 

  • R Development Core Team (2010) R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. ISBN 3-900051-07-0. http://www.R-project.org

  • Ratti JT, Reese KP (1988) Preliminary test of the ecological trap hypothesis. J Wild Manag 52:484–491

    Article  Google Scholar 

  • Riley SPD, Sauvajot RM, Fuller TK et al (2003) Effects of urbanization and habitat fragmentation on bobcats and coyotes in southern California. Conserv Biol 17:566–576

    Article  Google Scholar 

  • Rondinini C, Boitani L (2002) Habitat use by beech martens in a fragmented landscape. Ecography 25:257–264

    Article  Google Scholar 

  • Šálek M, Síčová P, Sedláček F (2005) Kuna skalní (Martes foina) v městském prostředí: početnost a rozšíření [Stone marten (Martes foina) in urban environment: abundance and distribution]. Lynx 36:111–116

    Google Scholar 

  • Šálek M, Kreisinger J, Sedláček F et al (2009) Corridors vs. hayfield matrix use by mammalian predators in an agricultural ladnscape. Agr Ecosyst Environ 134:8–13

    Article  Google Scholar 

  • Šálek M, Kreisinger J, Sedláček F et al (2010) Do foraging opportunities determine preferences of mammalian predators for habitat edges in an agricultural landscape? Landsc Urban Plan 98:86–91

    Article  Google Scholar 

  • Santos MJ, Santos-Reis M (2010) Stone marten (Martes foina) habitat in Mediterranean ecosystem: effects of scale, sex, and interspecific interactions. Eur J Wildl Res 56:275–286

    Article  Google Scholar 

  • Saracco JF, Collazo JA (1999) Predation on artificial nests along three edge types in a North Carolina bottomland hardwood forest. Wilson Bull 111:541–549

    Google Scholar 

  • Sargeant GA, Johnson DH, Berg WE (2003) Sampling designs for carnivore scent-station surveys. J Wild Manag 67:289–298

    Article  Google Scholar 

  • Saunders DA, Hobbs RJ, Margules CR (1991) Biological consequences of ecosystem fragmentation: a review. Conserv Biol 5:18–32

    Article  Google Scholar 

  • Schadt S, Revilla E, Wiegand T et al (2002) Assessing the suitability of central European landscapes for the reintroduction of Eurasian lynx. J Appl Ecol 39:189–203

    Article  Google Scholar 

  • Schmidt KA (2003) Nest predation and population declines in Illinois songbirds: a case for mesopredator effects. Conserv Biol 17:1141–1150

    Article  Google Scholar 

  • Seymour AS, Harris S, White PCL (2004) Potential effects of reserve size on incidental nest predation by red foxes Vulpes vulpes. Ecol Model 175:101–114

    Article  Google Scholar 

  • Sinclair KE, Hess GR, Moorman CE et al (2005) Mammalian nest predators respond to greenway width, landscape context and habitat structure. Landsc Urban Plan 71:277–293

    Google Scholar 

  • Söderström B, Part T, Ryden J (1998) Different nest predator faunas and nest predation risk on ground and shrub nests at forest ecotones: an experiment and a review. Oecologia 117:108–118

    Article  Google Scholar 

  • Storch I (1991) Habitat fragmentation, nest site selection, and nest predation risk in Capercaillie. Ornis Scand 22:213–217

    Article  Google Scholar 

  • Storch I, Woitke E, Krieger S (2005) Landscape-scale edge effect in predation risk in forest-farmland mosaics of central Europe. Landsc Ecol 20:927–940

    Article  Google Scholar 

  • Suarez AV, Pfennig KS, Robinson SK (1997) Nesting success of a disturbance-dependent songbird on different kinds of edges. Conserv Biol 11:928–935

    Article  Google Scholar 

  • Svobodová J, Kreisinger J, Šálek M et al (2011) Testing a mechanistic explanation for mammalian predator responses to habitat edges. Eur J Wildl Res 57:467–474

    Article  Google Scholar 

  • Taylor PD, Fahring L, Henein K et al (1993) Connectivity is a vital element of landscape structure. Oikos 68:571–573

    Article  Google Scholar 

  • Tellería JL, Santos T, Alcántara M (1991) Abundance and food-searching intensity of wood mice (Apodemus sylvaticus) in fragmented forests. J Mammal 72:183–187

    Article  Google Scholar 

  • Temple SA, Cary JR (1988) Modeling dynamics of habitat interior bird populations in fragmented landscapes. Conserv Biol 2:340–347

    Article  Google Scholar 

  • Vergara PM, Hahn I (2009) Linking edge effects and patch size effects: importance of matrix nest predators. Ecol Model 220:1189–1196

    Article  Google Scholar 

  • Vickery PD, Hunter ML, Wells JV (1992) Evidence of incidental nest predation and its effects on nests of threatened grassland birds. Oikos 63:281–288

    Article  Google Scholar 

  • Virgós E, Recio MR, Cortés Y (2000) Stone marten (Martes foina) use of different landscape types in the mountains of central Spain. Z Säugetierk 65:375–379

    Google Scholar 

  • Virgós E, Tellería JL, Santos T (2002) A comparison on the response to forest fragmentation by medium-sized Iberian carnivores in central Spain. Biodivers Conserv 11:1063–1079

    Article  Google Scholar 

  • Weidinger K (2009) Nest predators of woodland open-nesting songbirds in central Europe. Ibis 151:352–360

    Article  Google Scholar 

  • Wilcove DS (1985) Nest predation in forest tracts and the decline of migratory songbirds. Ecology 66:1211–1214

    Article  Google Scholar 

  • Wilcove DS, McLellan CH, Dobson AP (1986) Habitat fragmentation in the temperate zone. In: Soulé M (ed) Conservation biology: the science of scarcity and diversity. Sinauer Associates, Sunderland, pp 237–256

    Google Scholar 

  • Winter M, Johnson DH, Faaborg J (2000) Evidence for edge effects on multiple levels in tallgrass prairie. Condor 102:256–266

    Article  Google Scholar 

  • Yahner RH, Scott DP (1988) Effects of forest fragmentation on depredation of artificial nests. J Wild Manag 52:158–161

    Article  Google Scholar 

Download references

Acknowledgments

We want to thank J. Svobodová, J. Riegert, D.Hardekopf and F. Sedláček to valuable comments for early draft of manuscript. The study was supported by the grant MSMT6007665801 of the Czech Ministry of education and SGA2009016 of the Faculty of Science, University of South Bohemia. J.K. was partially supported by Research Centrum project no. LC06073 and VAV grant SP2dD-60-08.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Martin Šálek.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Červinka, J., Šálek, M., Pavluvčík, P. et al. The fine-scale utilization of forest edges by mammalian mesopredators related to patch size and conservation issues in Central European farmland. Biodivers Conserv 20, 3459–3475 (2011). https://doi.org/10.1007/s10531-011-0135-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10531-011-0135-8

Keywords

Navigation