Skip to main content

Advertisement

Log in

Assessing species traits and landscape relationships of the mammalian carnivore community in a neotropical biological corridor

  • Original Paper
  • Published:
Biodiversity and Conservation Aims and scope Submit manuscript

Abstract

Mammalian carnivores play an important role in regulating food webs and ecosystems. While many carnivore populations are facing various threats such as habitat loss and fragmentation, poaching, and illegal trade, others have adapted to human-dominated landscapes. Information about Neotropical carnivore communities in particular is limited, especially in disturbed landscapes. We conducted a camera trap survey at 38 sites across the San Juan–La Selva Biological Corridor in Costa Rica to assess occupancy and detection probabilities of the carnivore community. We developed hypotheses within a likelihood-based framework in order to determine the landscape features and species traits (diet and size) that influenced their occupancy. We detected nine of the 13 native carnivores predicted to occur in the corridor. When modeled separately, each species responded to land cover changes differently, suggesting no strong community-wide predictors of occupancy. We then modeled three separate guilds within the carnivore community: omnivorous mesopredators, obligate carnivorous mesopredators, and apex predators. These community guild models revealed a negative relationship between omnivorous mesopredators and increasing forest and tree plantation cover, suggesting omnivores utilize forest fragments and edge habitats in agricultural landscapes. Obligate carnivorous mesopredator models did not reveal any strong habitat relationships, but landscape effects tended to contradict our a priori predictions. Apex predators were positively associated with increasing forest and tree plantation cover, protected areas, and increasing distances to villages. Alarmingly, apex predators and obligate carnivorous mesopredators were generally rare within the biological corridor. A lack of top-down control alone might result in heightened occupancy for all mesopredators, but because the community is dominated by omnivorous species, bottom-up release from human-induced land cover changes and resource provision may better explain their high occupancy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  • Ahumada JA, Silva CE, Gajapersad K, Hallam C, Hurtado J, Martin E, McWilliam A, Mugerwa B, O’Brien T, Rovero F, Sheil D (2011) Community structure and diversity of tropical forest mammals: data from a global camera trap network. Philos Trans R Soc B Biol Sci 366(1578):2703–2711

    Article  Google Scholar 

  • Bruner AG, Gullison RE, Rice RE, Fonseca GA (2001) Effectiveness of parks in protecting tropical biodiversity. Science 291:125–128

    Article  CAS  PubMed  Google Scholar 

  • Burnham KP, Anderson DR (2002) Model selection and multimodel inference: a practical information-theoretic approach. Springer, Berlin

    Google Scholar 

  • Cardillo M, Purvis A, Sechrest W, Gittleman J, Bielby J, Mace G (2004) Human population density and extinction risk in the world’s carnivores. PLoS Biol 2(7):909–914

    Article  CAS  Google Scholar 

  • Carrillo E, Fuller TK, Saenz JC (2009) Jaguar (Panthera onca) hunting activity: effects of prey distribution and availability. J Trop Ecol 25(05):563–567

    Article  Google Scholar 

  • Chassot O, Monge G (2002) Corredor Biológico San Juan–La Selva: Ficha técnica. Centro Científico Tropical, San José

    Google Scholar 

  • Corrales-Gutiérrez D, Carazo-Salazar J, Salom Pérez R (2011) Validación de campo del Corredor Biológico San Juan–La Selva: evaluación de la presencia del Jaguar y sus principales presas. Informe técnico. Fundación Panthera, Costa Rica

  • Cove MV, Jones BM, Bossert AJ, Clever DR Jr, Dunwoody RK, White BC, Jackson VL (2012a) Use of camera traps to examine the mesopredator release hypothesis in a fragmented Midwestern landscape. Am Midl Nat 168(2):456–465

    Article  Google Scholar 

  • Cove MV, Pardo L, Spínola RM, Jackson VL, Saenz JC (2012b) Coyote Canis latrans (Carnivora: Canidae) range extension in northeastern Costa Rica: possible explanations and consequences. Latin Am J Conserv 3(1):82–86

    Google Scholar 

  • Cove MV, Spínola RM, Jackson VL, Saenz JC, Chassot O (2013) Integrating occupancy modeling and camera-trap data to estimate medium and large mammal detection and richness in a Central American biological corridor. Trop Conserv Sci 6(6):781–795

    Google Scholar 

  • Cove MV, Spinola RM, Jackson VL, Saenz JC (2014a) The role of fragmentation and landscape changes in the ecological release of common nest predators in the Neotropics. PeerJ 2:e464. doi:10.7717/peerj.464

    Article  PubMed  PubMed Central  Google Scholar 

  • Cove MV, Spinola RM, Jackson VL, Saenz JC (2014b) Camera trapping ocelots: an evaluation of felid attractants. Hystrix Ital J Mammal 25(2):113–116

    Google Scholar 

  • Crooks KR (2002) Relative sensitivities of mammalian carnivores to habitat fragmentation. Conserv Biol 16(2):488–502

    Article  Google Scholar 

  • Elmhagen B, Rushton SP (2007) Trophic control of mesopredators in terrestrial ecosystems: top-down or bottom-up? Ecol Lett 10(3):197–206

    Article  PubMed  Google Scholar 

  • Estes JA, Terborgh J, Brashares JS, Power ME, Berger J, Bond WJ, Carpenter SR et al (2011) Trophic downgrading of planet Earth. Science 333:301–306

    Article  CAS  PubMed  Google Scholar 

  • Fagan ME, DeFries RS, Sesnie SE, Arroyo JP, Walker W, Soto C, Chazdon RL, Sanchun A (2013) Land cover dynamics following a deforestation ban in northern Costa Rica. Environ Res Lett 8(3):034017

    Article  Google Scholar 

  • Fahrig L (2003) Effects of habitat fragmentation on biodiversity. Annu Rev Ecol Syst 34:487–515

    Article  Google Scholar 

  • Garrott RA, White PJ, Vanderbilt White CA (1993) Overabundance: an issue for conservation biologists? Conserv Biol 7(4):946–949

    Article  Google Scholar 

  • Guariguata MR, Arias- Le Claire H, Jones G (2002) Tree seed fate in a logged and fragmented forest landscape, Northeastern Costa Rica. Biotropica 34(3):405–415

    Article  Google Scholar 

  • Haddad NM (2015) Corridors for people, corridors for nature. Science 350(6265):1166–1167

    Article  CAS  PubMed  Google Scholar 

  • Hines JE (2006) PRESENCE-Software to estimate patch occupancy and related parameters. USGS-PWRC. http://www.mbr-pwrc.usgs.gov/software/presence.html

  • Johns A (1985) Selective logging and wildlife conservation in tropical rain forest: problems and recommendations. Biol Conserv 31:355–375

    Article  Google Scholar 

  • Laurance WF, Lovejoy TE, Vasconcelos HL, Bruna EM, Didham RK, Stouffer PC, Gascon C, Bierregaard RO, Laurance S, Sampaio E (2002) Ecosystem decay of Amazonian forests fragments: a 22 year investigation. Conserv Biol 16:605–618

    Article  Google Scholar 

  • Layman CA, Giery ST, Buhler S, Rossi R, Penland T, Henson MN, Bogdanoff AK, Cove MV, Irizarry AD, Schalk CM, Archer SK (2015) A primer on the history of food web ecology: fundamental contributions of fourteen researchers. Food Webs 4:14–24

    Article  Google Scholar 

  • Linkie M, Dinata Y, Nugroho A, Haidir I (2007) Estimating occupancy of a data deficient mammalian species living in tropical rainforests: Sun bears in the Kerinci Seblat region, Sumatra. Biol Conserv 137(1):20–27

    Article  Google Scholar 

  • MacKenzie DI, Nichols JD, Lachman GB, Droege S, Royle JA, Langtimm CA (2002) Estimating site occupancy rates when detection probabilities are less than one. Ecology 83:2248–2255

    Article  Google Scholar 

  • MacKenzie D, Nichols JD, Royle JA, Pollock K, Bailey L, Hines J (2006) Occupancy Estimation and modeling: Inferring patterns and dynamics of species occupancy. Academic Press, New York

    Google Scholar 

  • Maffei L, Cuéllar E, Noss AJ (2002) Uso de trampas-cámara para la evaluación de mamíferos en el ecotono chaco-chiquitanía. Rev Bol Ecol 11:55–65

    Google Scholar 

  • Michalski F, Peres C (2007) Disturbance-mediated mammal persistence and abundance-area relationships in amazonian forest fragments. Conserv Biol 21(6):1626–1640

    PubMed  Google Scholar 

  • Murcia C (1995) Edge effect in fragmented forest: implications for conservation. TREE 10(2):58–62

    CAS  PubMed  Google Scholar 

  • Myers N, Mittermeier RA, Mittermeier CG, Da Fonseca GA, Kent J (2000) Biodiversity hotspots for conservation priorities. Nature 403(6772):853–858

    Article  CAS  PubMed  Google Scholar 

  • Noss RF, Quigley HB, Hornocker MG, Merrill T, Paquet PC (1996) Conservation biology and carnivore conservation in the Rocky Mountains. Wildl Res 10(4):949–963

    Google Scholar 

  • Pardini R, Marques de Souza S, Braga-Neto R, Metzger J (2005) The role of forest structure, fragment size and corridors in maintaining small mammal abundance and diversity in an Atlantic forest landscape. Biol Conserv 124:253–266

    Article  Google Scholar 

  • Pardo L, Payán E (2015) Mamíferos de un agropaisaje de palma de aceite en las sabanas inundables de Orocué, Casanare, Colombia. Biota Colomb 16(1):54–66

    Google Scholar 

  • Pearce DW, Putz F, Vanclay JK (2003) Sustainable forestry in the tropics: panacea or folly? For Ecol Manag 172(2–3):229–247

    Article  Google Scholar 

  • Ritchie EG, Johnson CN (2009) Predator interactions, mesopredator release and biodiversity conservation. Ecol Lett 12:982–998

    Article  PubMed  Google Scholar 

  • Rodríguez-Herrera B, Chinchilla F, May-collado L (2002) Lista de especies, endemismo y conservación de los de mamíferos de Costa Rica. Revista Mexicana de Mastozoología 6:19–41

    Google Scholar 

  • Roemer GW, Gompper ME, Valkenburgh BV (2009) The ecological role of the mammalian mesopredator. Bioscience 59(2):165–173

    Article  Google Scholar 

  • Rosenberg DK, Noon BR, Meslow EC (1997). Biological corridors: form, function, and efficacy. BioScience 47(10):677–687

  • Ruiz-Gutiérrez V, Zipkin EF, Dhondt AA (2010) Occupancy dynamics in a tropical bird community: unexpectedly high forest use by birds classified as non-forest species. J Appl Ecol 47(3):621–630

    Article  Google Scholar 

  • Salom-Pérez R, Carrillo E, Sáenz JC, Mora JM (2007) Critical condition of the jaguar Panthera onca population in Corcovado National Park, Costa Rica. Oryx 41(01):51–56

    Article  Google Scholar 

  • Schank C, Mendoza E, Vettorazzi MJG, Cove MV, Jordan CA, O‘Farrill G, Meyer N, Lizcano DJ, Estrada N, Poot C, Leonardo R (2015) Integrating current range-wide occurrence data with species distribution models to map the potential distribution of Baird’s Tapir. Tapir Conserv 24(33):15–25

    Google Scholar 

  • Schipper J, Chanson JS, Chiozza F, Cox NA, Hoffmann M, Katariya V et al (2008) The status of the world’s land and marine mammals: diversity, threat, and knowledge. Science 322:225–230

    Article  CAS  PubMed  Google Scholar 

  • Soulé M, Boger D, Alberts A, Wright J, Sorice M, Hill S (1988) Reconstructed dynamics of rapid extinctions of chaparral-requiring birds in urban habitat islands. Conserv Biol 2(1):75–92

    Article  Google Scholar 

  • Terborgh J (1988) The big thing that run the world: a sequel to E.O. Wilson. Conserv Biol 2:402–403

    Article  Google Scholar 

  • Terborgh J (1992) Maintenance of diversity in tropical forests. Biotropica 24(2):283–292

    Article  Google Scholar 

  • Thornton D, Zeller K, Rondinini C, Boitani L, Crooks KR, Burdett C, Rabinowitz A, Quigley A (2015). Assessing the umbrella value of a range-wide conservation network for jaguars (Panthera onca). Ecol Appl. doi:10.1890/15-0602.1

  • Tobler MW, Carrillo-Percastegui SE, Leite Pitman R, Mares R, Powell G (2008) An evaluation of camera traps for inventorying large and medium sized terrestrial rainforest mammals. Anim Conserv 11:169–178

    Article  Google Scholar 

  • Wainwright M (2002) The natural history of Costa Rican mammals. Zona Tropical, San Jose

    Google Scholar 

  • Woodroffe R, Ginsberg J (1998) Edge effects and the extinction of populations inside protected areas. Science 280:2126–2128

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

We thank all the field assistants and lodges that helped with logistics for this research. Special thanks to Panthera—Costa Rica, and the private reserves or farms that allowed us to work inside, to Jose Fernando Gonzalez-Maya for his comments and collaboration during the M.Sc. dissertation process of the first author and during the writing process of this manuscript. We are also grateful to anonymous reviewers for their relevant edits and suggestions on the manuscript. Funding for this research was provided by Universidad Nacional de Costa Rica, Instituto Internacional de Conservación y Manejo de Vida Silvestre (ICOMVIS). IDEA WILD also helped with some indispensable equipment. Research was also supported and permitted by the National System of Conservation Areas–Ministry of the Environment, Energy and Telecommunication.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lain E. Pardo Vargas.

Additional information

Communicated by Dirk Sven Schmeller.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 41 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pardo Vargas, L.E., Cove, M.V., Spinola, R.M. et al. Assessing species traits and landscape relationships of the mammalian carnivore community in a neotropical biological corridor. Biodivers Conserv 25, 739–752 (2016). https://doi.org/10.1007/s10531-016-1089-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10531-016-1089-7

Keywords

Navigation