Skip to main content
Log in

Native predator chemical cues induce anti-predation behaviors in an invasive marine bivalve

  • Original Paper
  • Published:
Biological Invasions Aims and scope Submit manuscript

Abstract

The ability of non-native prey to detect native predators and respond with effective anti-predation behaviors may be an important factor mediating invasion success and biotic resistance. However, our current understanding of how native predator cues influence invasive prey is greatly limited. In estuaries and coastal seas—among the most heavily invaded ecosystems—olfaction of chemical cues is a primary mechanism by which sessile and sedentary organisms evaluate predation risk. We tested the hypothesis that chemical cues from a suite of predators native to southern California, USA, estuaries induce anti-predation behaviors in an invasive bivalve, the Asian nest mussel Arcuatula senhousia. In a laboratory experiment, we manipulated chemical cues from injured conspecifics and a functionally and taxonomically diverse group of native predators that may represent important agents of biotic resistance. We then measured several potential anti-predation behaviors that may be key to Arcuatula survival due to its modest structural defenses. As predicted, Arcuatula changed behaviors in response to cues from predators and injured conspecifics. Interestingly, however, Arcuatula was able to discriminate among cues from different native predators: mussels fed less when exposed to cues from snails and stingrays, burrowed deeper in the presence of cues from injured conspecifics and lobsters, and increased aggregation in response to snail cues. Our findings demonstrate that native predators can induce potentially-defensive behavioral changes in an invasive marine bivalve. The ability for Arcuatula to detect and selectively respond to novel predators may play a role in their invasion success in southern California and other regions globally.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Aho K, Derryberry D, Peterson T (2014) Model selection for ecologists: the worldviews of AIC and BIC. Ecology 95:631–636

    Article  PubMed  Google Scholar 

  • Apfelbach R, Blanchard CD, Blanchard RJ, Hayes RA, McGregor IS (2005) The effects of predator odors in mammalian prey species: a review of field and laboratory studies. Neurosci Biobehav Rev 29:1123–1144

    Article  PubMed  Google Scholar 

  • Berthon K (2015) How do native species respond to invaders? Mechanistic and trait-based perspectives. Biol Invasions 17:2199–2211

    Article  Google Scholar 

  • Bertness M, Grosholz E (1985) Population dynamics of the ribbed mussel, Geukensia demissa: the costs and benefits of an aggregated distribution. Oecologia 67:192–204

    Article  Google Scholar 

  • Bourdeau PE, Pangle KL, Reed EM, Peacor SD (2013) Finely tuned response of native prey to an invasive predator in a freshwater system. Ecology 94:1449–1455

    Article  PubMed  Google Scholar 

  • Burnham KP, Anderson DR (2002) Model selection and multimodel inference: a practical information-theoretic approach, 2nd edn. Springer, New York

    Google Scholar 

  • Carthey AJR, Banks PB (2014) Naïveté in novel ecological interactions: lessons from theory and experimental evidence. Biol Rev 89:932–949

    Article  PubMed  Google Scholar 

  • Castorani MCN, Hovel KA (2015) Invasive prey indirectly increase predation on their native competitors. Ecology 96:1911–1922

    Article  PubMed  Google Scholar 

  • Cheng BS, Hovel KA (2010) Biotic resistance to invasion along an estuarine gradient. Oecologia 164:1049–1059

    Article  PubMed  PubMed Central  Google Scholar 

  • Cheung S, Lam S, Gao Q, Mak KK, Shin PKS (2004) Induced anti-predator responses of the green mussel, Perna viridis (L.), on exposure to the predatory gastropod, Thais clavigera Küster, and the swimming crab, Thalamita danae Stimpson. Mar Biol 144:675–684

    Article  Google Scholar 

  • Cheung S, Luk K, Shin P (2006) Predator-labeling effect on byssus production in marine mussels Perna viridis (L.) and Brachidontes variabilis (Krauss). J Chem Ecol 32:1501–1512

    Article  PubMed  CAS  Google Scholar 

  • Chivers DP, Smith RJF (1998) Chemical alarm signalling in aquatic predator–prey systems: a review and prospectus. Ecoscience 5:338–352

    Google Scholar 

  • Cochran WG (1941) The distribution of the largest of a set of estimated variances as a fraction of their total. Ann Eugen 11:47–52

    Article  Google Scholar 

  • Côté IM (1995) Effects of predatory crab effluent on byssus production in mussels. J Exp Mar Biol Ecol 188:233–241

    Article  Google Scholar 

  • Côté IM, Jelnikar E (1999) Predator-induced clumping behaviour in mussels (Mytilus edulis Linnaeus). J Exp Mar Biol Ecol 235:201–211

    Article  Google Scholar 

  • Crooks JA (1996) The population ecology of an exotic mussel, Musculista senhousia, in a southern California bay. Estuaries 19:42–50

    Article  Google Scholar 

  • Crooks JA (1998a) Habitat alteration and community-level effects of an exotic mussel, Musculista senhousia. Mar Ecol Prog Ser 162:137–152

    Article  Google Scholar 

  • Crooks JA (1998b) The effects of the introduced mussel, Musculista senhousia, and other anthropogenic agents on benthic ecosystems of Mission Bay, San Diego. Ph.D. dissertation. University of California, San Diego

  • Crooks JA (2001) Assessing invader roles within changing ecosystems: historical and experimental perspectives on an exotic mussel in an urbanized lagoon. Biol Invasions 3:23–36

    Article  Google Scholar 

  • Crooks JA (2002) Predators of the invasive mussel Musculista senhousia (Mollusca: Mytilidae). Pac Sci 56:49–56

    Article  Google Scholar 

  • Crooks JA, Khim HS (1999) Architectural vs. biological effects of a habitat-altering, exotic mussel, Musculista senhousia. J Exp Mar Biol Ecol 240:53–75

    Article  Google Scholar 

  • Czarnołęski M, Müller T, Adamus K, Ogorzelska G, Sog M (2010) Injured conspecifics alter mobility and byssus production in zebra mussels Dreissena polymorpha. Fundam Appl Limnol Arch Hydrobiol 176:269–278

    Article  Google Scholar 

  • Dexter DM, Crooks JA (2000) Benthic communities and the invasion of an exotic mussel in Mission Bay, San Diego: a long-term history. Bull South Calif Acad Sci 99:128–146

    Google Scholar 

  • Dunnett CW (1955) A multiple comparison procedure for comparing several treatments with a control. J Am Stat Assoc 50:1096–1121

    Article  Google Scholar 

  • Elton CS (1958) The ecology of invasions by animals and plant. Methuen, London

    Book  Google Scholar 

  • Ferrari MCO, Wisenden BD, Chivers DP (2010) Chemical ecology of predator–prey interactions in aquatic ecosystems: a review and prospectus. Can J Zool 88:698–724

    Article  Google Scholar 

  • Flynn AM, Smee DL (2010) Behavioral plasticity of the soft-shell clam, Mya arenaria (L.), in the presence of predators increases survival in the field. J Exp Mar Biol Ecol 383:32–38

    Article  Google Scholar 

  • Fréchette M, Aitken AE, Pagé L (1992) Interdependence of food and space limitation of a benthic suspension feeder: consequences for self-thinning relationships. Mar Ecol Prog Ser 83:55–62

    Article  Google Scholar 

  • Garner YL, Litvaitis MK (2013) Effects of injured conspecifics and predators on byssogenesis, attachment strength and movement in the blue mussel, Mytilus edulis. J Exp Mar Biol Ecol 448:136–140

    Article  Google Scholar 

  • Grason EW, Miner BG (2012) Behavioral plasticity in an invaded system: non-native whelks recognize risk from native crabs. Oecologia 169:105–115

    Article  PubMed  Google Scholar 

  • Griffiths CL, Richardson CA (2006) Chemically induced predator avoidance behaviour in the burrowing bivalve Macoma balthica. J Exp Mar Biol Ecol 331:91–98

    Article  CAS  Google Scholar 

  • Grosholz E (2010) Avoidance by grazers facilitates spread of an invasive hybrid plant. Ecol Lett 13:145–153

    Article  PubMed  CAS  Google Scholar 

  • Hamilton W (1971) Geometry for the selfish herd. J Theor Biol 31:295–311

    Article  PubMed  CAS  Google Scholar 

  • Hay ME (2009) Marine chemical ecology: chemical signals and cues structure marine populations, communities, and ecosystems. Ann Rev Mar Sci 1:193–212

    Article  PubMed  PubMed Central  Google Scholar 

  • Hay ME, Steinberg PD (1992) The chemical ecology of plant-herbivor interactions in marine versus terrestrial communities. In: Rosenthal GA, Berenbaum MR (eds) Herbivores: their interaction with secondary metabolites, evolutionary and ecological processes. Academic Press, San Diego, pp 371–413

    Chapter  Google Scholar 

  • Hurvich CM, Tsai CL (1989) Regression and time series model selection in small samples. Biometrika 76:297–307

    Article  Google Scholar 

  • Katz LB, Dill LM (1998) The scent of death: chemosensory assessment of predation risk by animals. Ecoscience 5:361–394

    Google Scholar 

  • Kimbro DL, Cheng BS, Grosholz ED (2013) Biotic resistance in marine environments. Ecol Lett 16:821–833

    Article  PubMed  Google Scholar 

  • Kushner RB, Hovel KA (2006) Effects of native predators and eelgrass habitat structure on the introduced Asian mussel Musculista senhousia (Benson in Cantor) in southern California. J Exp Mar Biol Ecol 332:166–177

    Article  Google Scholar 

  • Largier JL, Hollibaugh JT, Smith SV (1997) Seasonally hypersaline estuaries in Mediterranean-climate regions. Estuar Coast Shelf Sci 45:789–797

    Article  Google Scholar 

  • Leonard GH, Bertness MD, Yund PO (1999) Crab predation, waterborne cues, and inducible defenses in the blue mussel, Mytilus edulis. Ecology 80:1–14

    Article  Google Scholar 

  • Lima SL (2002) Putting predators back into behavioral predator–prey interactions. Trends Ecol Evol 17:70–75

    Article  Google Scholar 

  • Lin J (1991) Predator–prey interactions between blue crabs and ribbed mussels living in clumps. Estuar Coast Shelf Sci 32:61–69

    Article  Google Scholar 

  • MacDonald KB (1969) Quantitative studies of salt marsh mollusc faunas from the North American Pacific coast. Ecol Monogr 39:33–59

    Article  Google Scholar 

  • Maron J, Vilà M (2001) When do herbivores affect plant invasion? Evidence for the natural enemies and biotic resistance hypotheses. Oikos 95:361–373

    Article  Google Scholar 

  • Mazerolle MJ (2014) AICcmodavg: model selection and multimodel inference based on (Q)AIC(c). R package version 2.00. http://CRAN.R-project.org/package=AICcmodavg

  • Meredith T, Kajiura S (2010) Olfactory morphology and physiology of elasmobranchs. J Exp Biol 213:3449–3456

    Article  PubMed  Google Scholar 

  • Michael SW (2005) Reef sharks & rays of the world: a guide to their identification, behaviour and ecology. Lighthouse Press, Annapolis

    Google Scholar 

  • Naddafi R, Rudstam LG (2013) Predator-induced behavioural defences in two competitive invasive species: the zebra mussel and the quagga mussel. Anim Behav 86:1275–1284

    Article  Google Scholar 

  • Nakaoka M (2000) Nonlethal effects of predators on prey populations: predator-mediated change in bivalve growth. Ecology 81:1031–1045

    Article  Google Scholar 

  • Nicastro KR, Zardi GI, McQuaid CD (2007) Behavioural response of invasive Mytilus galloprovincialis and indigenous Perna perna mussels exposed to risk of predation. Mar Ecol Prog Ser 336:169–175

    Article  Google Scholar 

  • Nunes AL, Orizaola G, Laurila A, Rebelo R (2014) Rapid evolution of constitutive and inducible defenses against an invasive predator. Ecology 95:1520–1530

    Article  PubMed  Google Scholar 

  • Palmer A, Szymanska J, Thomas L (1982) Prolonged withdrawal: a possible predator evasion behavior in Balanus glandula (Crustacea: Cirripedia). Mar Biol 67:51–55

    Article  Google Scholar 

  • Payne CM, Tillberg CV, Suarez AV (2004) Recognition systems and biological invasions. Ann Bot Fenn 41:843–858

    Google Scholar 

  • Pinheiro JC, Bates DM (2000) Mixed-effects models in S and SPLUS. Springer, New York

    Book  Google Scholar 

  • Pinheiro JC, Bates DM, DebRoy S, Sarkar D, R Core Team (2014) nlme: linear and nonlinear mixed effects models. R package version 3.1-117. http://CRAN.R-project.org/package=nlme

  • Ponder WF, Vokes EH (1988) A revision of the Indo-West Pacific fossil and recent species of Murex s.s. and Haustellum (Mollusca: Gastropoda: Muricidae). Records of the Australian Museum

  • R Core Team (2014) R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. http://www.R-project.org/

  • Reimer O, Tedengren M (1996) Phenotypical improvement of morphological defences in the mussel Mytilus edulis induced by exposure to the predator Asterias rubens. Oikos 75:383–390

    Article  Google Scholar 

  • Reusch TBH (1998) Native predators contribute to invasion resistance to the non-indigenous bivalve Musculista senhousia in southern California, USA. Mar Ecol Prog Ser 170:159–168

    Article  Google Scholar 

  • Reusch TBH, Williams SL (1998) Variable responses of native eelgrass Zostera marina to a non-indigenous bivalve Musculista senhousia. Oecologia 113:428–441

    Article  Google Scholar 

  • Robinson JV, Wellborn GA (1988) Ecological resistance to the invasion of a freshwater clam, Corbicula fluminea: fish predation effects. Oecologia 77:445–452

    Article  Google Scholar 

  • Ruesink JL, Lenihan HS, Trimble AC, Heiman KW, Micheli F, Byers JE, Kay MC (2005) Introduction of non-native oysters: ecosystem effects and restoration implications. Annu Rev Ecol Evol Syst 36:643–689

    Article  Google Scholar 

  • Ruiz GM, Fofonoff P, Hines AH, Grosholz ED (1999) Non-indigenous species as stressors in estuarine and marine communities: assessing invasion impacts and interactions. Limnol Oceanogr 44:950–972

    Article  Google Scholar 

  • Sih A (1985) Evolution, predator avoidance, and unsuccessful predation. Am Nat 125:153–157

    Article  Google Scholar 

  • Sih A, Bolnick DI, Luttbeg B, Orrock JL, Peacor SD, Pintor LM, Preisser E, Rehage JS, Vonesh JR (2010) Predator–prey naïveté, antipredator behavior, and the ecology of predator invasions. Oikos 119:610–621

    Article  Google Scholar 

  • Smee DL, Weissburg MJ (2006a) Clamming up: environmental forces diminish the perceptive ability of bivalve prey. Ecology 87:1587–1598

    Article  PubMed  Google Scholar 

  • Smee DL, Weissburg MJ (2006b) Hard clams (Mercenaria mercenaria) evaluate predation risk using chemical signals from predators and injured conspecifics. J Chem Ecol 32:605–619

    Article  PubMed  CAS  Google Scholar 

  • Smith L, Jennings J (2000) Induced defensive responses by the bivalve Mytilus edulis to predators with different attack modes. Mar Biol 136:461–469

    Article  Google Scholar 

  • Sousa R, Gutiérrez JL, Aldridge DC (2009) Non-indigenous invasive bivalves as ecosystem engineers. Biol Invasions 11:2367–2385

    Article  Google Scholar 

  • Stachowicz JJ, Whitlatch RB, Osman RW (1999) Species diversity and invasion resistance in a marine ecosystem. Science 286:1577–1579

    Article  PubMed  CAS  Google Scholar 

  • Stiven AE, Gardner SA (1992) Population processes in the ribbed mussel Geukensia demissa (Dillwyn) in a North Carolina salt marsh tidal gradient: spatial pattern, predation, growth and mortality. J Exp Mar Biol Ecol 160:81–102

    Article  Google Scholar 

  • Tegner MJ, Levin LA (1983) Spiny lobsters and sea urchins: analysis of a predator–prey interaction. J Exp Mar Biol Ecol 73:125–150

    Article  Google Scholar 

  • Thompson JN (1998) Rapid evolution as an ecological process. Trends Ecol Evol 13:329–332

    Article  PubMed  CAS  Google Scholar 

  • Trussell GC, Ewanchuk PJ, Bertness MD, Silliman BR (2004) Trophic cascades in rocky shore tide pools: distinguishing lethal and nonlethal effects. Oecologia 139:427–432

    Article  PubMed  Google Scholar 

  • Underwood AJ (1997) Experiments in ecology: their logical design and interpretation using analysis of variance. Cambridge University Press, Cambridge

    Google Scholar 

  • Vaudo J, Lowe C (2006) Movement patterns of the round stingray Urobatis halleri (Cooper) near a thermal outfall. J Fish Biol 68:1756–1766

    Article  Google Scholar 

  • Warton D, Hui F (2011) The arcsine is asinine: the analysis of proportions in ecology. Ecology 92:3–10

    Article  PubMed  Google Scholar 

  • Webster DR, Weissburg MJ (2009) The hydrodynamics of chemical cues among aquatic organisms. Annu Rev Fluid Mech 41:73–90

    Article  Google Scholar 

  • Weissburg M, Ferner M, Pisut D, Smee DL (2002) Ecological consequences of chemically mediated prey perception. J Chem Ecol 28:1953–1970

    Article  PubMed  CAS  Google Scholar 

  • Werner EE, Peacor SD (2003) A review of trait-mediated indirect interactions in ecological communities. Ecology 84:1083–1100

    Article  Google Scholar 

  • Williams SL (2007) Introduced species in seagrass ecosystems: status and concerns. J Exp Mar Biol Ecol 350:89–110

    Article  Google Scholar 

  • Williams SL, Ebert TA, Allen BJ (2005) Does the recruitment of a non-native mussel in native eelgrass habitat explain their disjunct adult distributions? Divers Distrib 11:409–416

    Article  Google Scholar 

  • Wisenden BD (2000) Olfactory assessment of predation risk in the aquatic environment. Philos Trans R Soc Lond B Biol Sci 355:1205–1208

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Wudkevich K, Wisenden BD, Chiver DP, Smith RJF (1997) Reactions of Gammarus lacustris to chemical stimuli from natural predators and injured conspecifics. J Chem Ecol 23:1163–1173

    Article  CAS  Google Scholar 

  • Yoshida T, Jones LE, Ellner SP, Fussmann GF, Hairston NG (2003) Rapid evolution drives ecological dynamics in a predator–prey system. Nature 424:303–306

    Article  PubMed  CAS  Google Scholar 

  • Zimmer-Faust RK, Case JF (1982) Odors influencing foraging behavior of the California spiny lobster, Panulirus interruptus, and other decapod crustacea. Mar Behav Physiol 9:35–58

    Article  Google Scholar 

  • Zuur A, Ieno E, Walker N, Saveliev AA, Smith GM (2009) Mixed effects models and extensions in ecology with R. Springer, New York

    Book  Google Scholar 

Download references

Acknowledgments

We are indebted to Cristina Lever and Lauren Miley for critical assistance with field collections and running the laboratory experiment, Jeremy Long for helpful feedback on the experimental design, Josh Brower and Violet Compton for logistical support for the laboratory experiment, and Jon-Patrick Allem and Scott Burgess for statistical advice. Funding for this project was provided by a National Science Foundation Graduate Research Fellowship to M.C.N.C. This is Contribution No. 43 from the San Diego State University Coastal and Marine Institute.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Max C. N. Castorani.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Castorani, M.C.N., Hovel, K.A. Native predator chemical cues induce anti-predation behaviors in an invasive marine bivalve. Biol Invasions 18, 169–181 (2016). https://doi.org/10.1007/s10530-015-1000-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10530-015-1000-6

Keywords

Navigation