Skip to main content
Log in

Predator-Labeling Effect on Byssus Production in Marine Mussels Perna viridis (L.) and Brachidontes variabilis (Krauss)

  • Published:
Journal of Chemical Ecology Aims and scope Submit manuscript

Abstract

Mussels Perna viridis and Brachidontes variabilis were exposed to chemical cues from the predatory crab Thalamita danae maintained on different diets, and byssal thread production of the mussels was studied. P. viridis produced the highest number as well as the thickest and longest byssal threads when they were exposed to crabs maintained on a diet of P. viridis as compared with those exposed to crabs maintained on a diet of the top shell Monodonta labio, the rock oyster Saccostrea cucullata, or crabs that were starved. For B. variabilis, results were similar, in that a diet containing B. variabilis elicited the greatest response as compared with other treatments. This indicates that the mussels were able to discriminate chemical cues released from predators maintained on different diets, and respond accordingly to the level of predation risk. By increasing the strength of byssal attachment as a defensive trait, the chance of being dislodged and consumed by crabs is reduced. As energy cost involved in the induction of an antipredatory response is considerable, this defensive trait seems to be an advantage to the mussels in enhancing efficiency. The short response time in byssal thread production allows the mussels to increase resistance against predation by crabs at the time when predation pressure is the highest in a tidal cycle.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Appleton, R. D. and Palmer, A. R. 1988. Water-borne stimuli released by predatory crabs and damaged prey induce more predator-resistant shells in a marine gastropod. Proc. Natl. Acad. Sci. USA 85:4387–4391.

    Article  PubMed  Google Scholar 

  • Cheng, J. H. and Chang, E. S. 1991. Variation in urinary output of the lobster. J. Exp. Zool. 260:288−294.

    Article  Google Scholar 

  • Cheung, S. G. 1991. Energetics of transplanted populations of the green-lipped mussel Perna viridis (Linnaeus) (Bivalvia: Mytilacea) in Hong Kong: II. Integrated energy budget. Asian Mar. Biol. 8:133−147.

    Google Scholar 

  • Cheung, S. G., Lam, S., Gao, Q. F., Mak, K. K., and Shin, P. K. S. 2004a. Induced anti-predator responses of the green mussel, Perna viridis (L.), on exposure to the predatory gastropod, Thais clavigera Kuster, and the swimming crab, Thalamita danae Stimpson. Mar. Biol. 144:675−684.

    Article  Google Scholar 

  • Cheung, S. G., Tong P. Y., Yip, K. M., and Shin, P. K. S. 2004b. Chemical cues from predators and damaged conspecifics affect byssus production in the green-lipped mussel Perna viridis. Mar. Freshw. Behav. Physiol. 37:127−135.

    Article  CAS  Google Scholar 

  • Chivers, D. P. and Smith, R. J. F. 1998. Chemical alarm signalling in aquatic predator–prey systems: a review and prospectus. Ecoscience 5:338−352.

    Google Scholar 

  • Chivers, D. P., Wisenden, B. D., and Smith, R. J. F. 1996. Damselfly larvae learn to recognise predators from chemical cues in the predator's diets. Anim. Behav. 52:315−320.

    Article  Google Scholar 

  • Côtè, I. M. 1995. Effects of predatory crab effluent on byssus production in mussels. J. Exp. Mar. Biol. Ecol. 188:233−241.

    Article  Google Scholar 

  • Covich, A. P., Crowl, T. A., Alexander J. E., and Vaughn, C. C. 1994. Predator-avoidance responses in freshwater decapod–gastropod interactions mediated by chemical stimuli. J. N. Am. Benthol. Soc. 13:283−290.

    Article  Google Scholar 

  • Elner, R. W. 1978. The mechanics of predation by the shore crab, Carcinus maenas (L.), on the edible mussel, Mytilus edulis L. Oecologia 36:333−344.

    Article  Google Scholar 

  • Environmental Protection Department. 2004. Marine Water Quality in Hong Kong. Hong Kong Government, Hong Kong.

  • Griffiths, C. L. and King, J. A. 1979. Energy expended on growth and gonad output in the ribbed mussel Aulacomya ater. Mar. Biol. 53:217−222.

    Article  Google Scholar 

  • Grosberg, R. K. 1988. The evolution of allorecognition specificity in clonal invertebrates. Q. Rev. Biol. 63:377−412.

    Article  Google Scholar 

  • Hagen, N. T., Andersen, Å., and Stabell, O. B. 2002. Alarm responses of the green sea urchin, Strongylocentrotus droebachiensis, induced by chemically labelled durophagous predators and simulated acts of predation. Mar. Biol. 140:365−374.

    Article  Google Scholar 

  • Howe, N. R. and Harris, L. G. 1978. Transfer of the sea anemone pheromone, anthopleurine, by the nudibranch Aeolidia papillosa. J. Chem. Ecol. 4:551−561.

    Article  CAS  Google Scholar 

  • Hughes, R. N. and Seed, R. 1995. Behavioural mechanisms of prey selection in crabs. J. Exp. Mar. Biol. Ecol. 193:225−238.

    Article  Google Scholar 

  • Jacobsen, H. P. and Stabell, O. B. 2004. Antipredator behaviour mediated by chemical cues: the role of conspecific alarm signalling and predator labelling in the avoidance response of a marine gastropod. Oikos 104:43−50.

    Article  Google Scholar 

  • Kats, L. B. and Dill, L. M. 1998. The scent of death: chemosensory assessment of predation risk by prey animals. Ecoscience 5:361−394.

    Google Scholar 

  • Lee, S. Y. and Morton, B. 1985. The Hong Kong Mytilidae, pp. 49−76, in B. Morton and D. Dudgeon (eds.). Proceedings of the Second International Workshop on the Malacofauna of Hong Kong and Southern China. Hong Kong University Press, Hong Kong.

    Google Scholar 

  • Leonard, G. H., Bertness, M. D., and Yund, P. O. 1999. Crab predation, waterborne cues, and inducible defenses in blue mussel, Mytilus edulis. Ecology 80:1−14.

    Article  Google Scholar 

  • Lin, J. 1991. Predator–prey interactions between blue crabs and ribbed mussels living in clumps. Estuar. Coast. Shelf Sci. 32:61−69.

    Article  Google Scholar 

  • Mantel, L. H. and Farmer, L. L. 1983. Osmotic and ionic regulation, pp. 53−61, in L. H. Mantel (ed.). The Biology of Crustacea 5. Academic Press, New York.

    Google Scholar 

  • Mathis, A. and Smith, R. J. F. 1993. Fathead minnows, Pimephales promelas, learn to recognize northern pike, Esox lucius, as predators on the basis of chemical stimuli from minnows in the pike's diet. Anim. Behav. 46:645−656.

    Article  Google Scholar 

  • Morton, B. and Morton, J. 1983. The Seashore Ecology of Hong Kong. Hong Kong University Press, Hong Kong.

    Google Scholar 

  • Pisut, D. P. and Pawlik, J. R. 2002. Anti-predatory chemical defenses of ascidians: secondary metabolites or inorganic acids? J. Exp. Mar. Biol. Ecol. 270:203–214.

    Article  CAS  Google Scholar 

  • Price, H. A. 1981. Byssus thread strength in the mussel, Mytilus edulis. J. Zool. 194:245−255.

    Article  Google Scholar 

  • Rawlings, T. A. 1994. Effect of elevated predation risk on the metabolic rate and spawning intensity of a rocky shore marine gastropod. J. Exp. Mar. Biol. Ecol. 181:67−79.

    Article  Google Scholar 

  • Reimer, O. and Harms, R. S. 2001. Predator-inducible changes in blue mussels from the predator-free Baltic Sea. Mar. Biol. 139:959−965.

    Article  Google Scholar 

  • Seed, R. 1990. Predator–prey relationships between the swimming carb Thalamita danae Stimpson (Decapoda: Portunidae) and the mussels Perna viridis (L.) and Brachidontes variabilis (Krauss), pp. 993−1013, in B. Morton (ed.). Proceedings of the Second International Marine Biological Workshop: The Marine Flora and Fauna of Hong Kona and Southern China. Hong Kong University Press, Hong Kong.

    Google Scholar 

  • Seed, R. 1993. Invertebrate predators and their role in structuring coastal and estuarine populations of filter feeding bivalves, pp. 149−194, in R. F. Dame (ed.). Bivalve Filter Feeders in Estuarine and Coastal Ecosystem Processes. Springer-Verlag, Berlin.

    Google Scholar 

  • Shafee, M. S. 1979. Ecological energy requirements of the green mussel, Perna viridis Linnaeus from the Enore Estuary, Madras. Oceanol. Acta 2:69−74.

    Google Scholar 

  • Sih, A. 1980. Optimal behaviour: can foragers balance two conflicting demands. Science 210:1041−1043.

    Article  PubMed  Google Scholar 

  • Smith, L. D. and Jennings, J. A. 2000. Induced defensive responses by the bivalve Mytilus edulis to predators with different attach modes. Mar. Biol. 136:461−469.

    Article  Google Scholar 

  • Trussell, G. C. 1996. Phenotypic plasticity in an intertidal snail: the role of a common crab predator. Evolution 50:448–454.

    Article  Google Scholar 

  • Vermeij, G. J. 1987. Evolution and Escalation: An Ecological History of Life. Princeton University Press, New Jersey.

    Google Scholar 

  • Wicklow, B. J. 1988. Developmental polymorphism induced by intraspecific predation in the ciliated protozoan Onychodromus quadricornutus. J. Protozool. 35:137−141.

    Google Scholar 

  • Wilson, D. J. and Lefcort, H. 1993. The effects of predator diet on the alarm response of red-legged frog, Rana aurora, tadpoles. Anim. Behav. 46:1017−1019.

    Article  Google Scholar 

  • Wisenden, B. D. and Millard, M. C. 2001. Aquatic flatworms use chemical cues from injured conspecifics to assess predation risk and to associate risk with novel cues. Anim. Behav. 62:761–766.

    Article  Google Scholar 

Download references

Acknowledgments

We thank F. Y. Yang for technical assistance in the research, Dr. Bruce Richardson for comments on earlier drafts, and the two anonymous reviewers for their constructive comments on the manuscript. The work described was supported by a grant from the Research Grants Council of the Hong Kong Special Administrative Region, China (Project No. CityU 1451/05M).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P. K. S. Shin.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cheung, S.G., Luk, K.C. & Shin, P.K.S. Predator-Labeling Effect on Byssus Production in Marine Mussels Perna viridis (L.) and Brachidontes variabilis (Krauss). J Chem Ecol 32, 1501–1512 (2006). https://doi.org/10.1007/s10886-006-9065-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10886-006-9065-4

Keywords

Navigation