Skip to main content
Log in

The contribution of volatilization and exudation to the allelopathic phytotoxicity of invasive Chrysanthemoides monilifera subsp. monilifera (boneseed)

  • Original Paper
  • Published:
Biological Invasions Aims and scope Submit manuscript

Abstract

Negative plant–plant interactions through the release of allelochemicals via leaching, decomposition of residues in soil, volatilization and exudation are well established. We aimed to characterise the allelopathic potential of Chrysanthemoides monilifera subsp. monilifera (boneseed) in terms of volatilization and exudation. A series of bioassays compared dose–response to volatilization impacts of boneseed organs on model species Lactuca sativa and associated native Acacia mearnsii with particular reference to investigating physiological and biochemical interference through excessive reactive oxygen species (ROS) production. The impact of boneseed exudates on native Xerochrysum bracteatum and A. mearnsii were investigated in greenhouse. We found significant dose–response impacts of boneseed volatilization in the order of root > leaf > stem on biometric parameters of both of the test species with more significant impact on L. sativa while impact on germination indices was negligible. Hydrogen peroxide, lipid peroxidation and electrolyte leakage in the test species seedlings was increased with increasing doses of boneseed organs, suggesting cellular fragmentation, and a potential mechanism of allelopathic impact through excessive ROS production. Boneseed exudates killed X. bracteatum and inhibited growth parameters of A. mearnsii significantly which was partially reduced by activated carbon treatments. The increase of free proline in A. mearnsii and phenolics in soil, and decrease of soil dehydrogenase activities indicated that boneseed led to a stressed condition in the neighboring species. Our findings help to explain the mechanism of invasion by boneseed and emphasize the importance of mitigating the effects of allelopathy by boneseed to protect native and crop species.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Bais HP, Vepachedu R, Gilroy S et al (2010) Allelopathy and exotic plant invasion: from molecules and genes to species interactions. Science 301:1377–1380

    Article  Google Scholar 

  • Bärlocher F, Graça M (2005) Total phenolics. In: Graça M, Bärlocher F, Gessner M (eds) Methods to study litter decomposition. Springer, Berlin, pp 97–100

    Chapter  Google Scholar 

  • Bates LS, Waldren RP, Teare ID (1973) Rapid determination of free proline for water-stress studies. Plant Soil 39:205–207

    Article  CAS  Google Scholar 

  • Batish D, Singh H, Setia N et al (2006) 2-Benzoxazolinone (BOA) induced oxidative stress, lipid peroxidation and changes in some antioxidant enzyme activities in mung bean (Phaseolus aureus). Plant Physiol Biochem 44:819–827

    Article  CAS  PubMed  Google Scholar 

  • Bertin C, Yang X, Weston LA (2003) The role of root exudates and allelochemicals in the rhizosphere. Plant Soil 256:67–83

    Article  CAS  Google Scholar 

  • Bhowmik PC, Inderjit (2003) Challenges and opportunities in implementing allelopathy for natural weed management. Crop Prot 22:661–671

    Article  Google Scholar 

  • Bogatek R, Gniazdowska A (2007) ROS and phytohormones in plant-plant allelopathic interaction. Plant Signal Behav 2:317–318

    Article  PubMed Central  PubMed  Google Scholar 

  • Bogatek R, Gniazdowska A, Zakrzewska W et al (2006) Allelopathic effects of sunflower extracts on mustard seed germination and seedling growth. Biol Plant 50:156–158

    Article  Google Scholar 

  • Callaway RM, Aschehoug ET (2000) Invasive plants versus their new and old neighbors: a mechanism for exotic invasion. Science 290:521–523

    Article  CAS  PubMed  Google Scholar 

  • Chiapusio G, Sánchez A, Reigosa M et al (1997) Do germination indices adequately reflect allelochemical effects on the germination process? J Chem Ecol 23:2445–2453

    Article  CAS  Google Scholar 

  • Chon S-U, Choi S-K, Jung S et al (2002) Effects of alfalfa leaf extracts and phenolic allelochemicals on early seedling growth and root morphology of alfalfa and barnyard grass. Crop Prot 21:1077–1082

    Article  CAS  Google Scholar 

  • Collins TL (2003) Propagation and cultivation of selected Central Australian wildflowers©. In: Combined proceedings international plant propagators’ society, pp 149–153

  • Connick WJ Jr, Bradow JM, Legendre MG (1989) Identification and bioactivity of volatile allelochemicals from amaranth residues. J Agric Food Chem 37:792–796

    Article  CAS  Google Scholar 

  • de Jong TJ, Klinkhamer PG (1985) The negative effects of litter of parent plants of Cirsium vulgare on their offspring: autotoxicity or immobilization? Oecologia 65:153–160

    Article  Google Scholar 

  • Del Fabbro C, Güsewell S, Prati D (2014) Allelopathic effects of three plant invaders on germination of native species: a field study. Biol Invasions 16:1035–1042

    Article  Google Scholar 

  • Department of Environment Conservation (2006) NSW threat abatement plan: invasion of native plant communities by Chrysanthemoides monilifera (Bitou Bush and Boneseed). Department of Environment and Conservation (New South Wales), Hurstville

    Google Scholar 

  • Dewes T (1996) Effect of pH, temperature, amount of litter and storage density on ammonia emissions from stable manure. J Agric Sci 127:501–509

    Article  Google Scholar 

  • Dorken ME, Barrett SCH (2004) Phenotypic plasticity of vegetative and reproductive traits in monoecious and dioecious populations of Sagittaria latifolia (Alismataceae): a clonal aquatic plant. J Ecol 92:32–44

    Article  Google Scholar 

  • Dorning M, Cipollini D (2006) Leaf and root extracts of the invasive shrub, Lonicera maackii, inhibit seed germination of three herbs with no autotoxic effects. Plant Ecol 184:287–296

    Article  Google Scholar 

  • Durán-Serantes B, González L, Reigosa MJ (2002) Comparative physiological effects of three allelochemicals and two herbicides on Dactylis glomerata. Acta Physiol Plant 24:385–392

    Article  Google Scholar 

  • Ens EJ, French K, Bremner J (2008) Bitou bush invasion is facilitated by soil chemistry changes which inhibit the growth of native plants. Queensland Weed Society, Brisbane, pp 104–106

    Google Scholar 

  • Ens E, Bremner J, French K et al (2009a) Identification of volatile compounds released by roots of an invasive plant, bitou bush (Chrysanthemoides monilifera spp. rotundata), and their inhibition of native seedling growth. Biol Invasions 11:275–287

    Article  Google Scholar 

  • Ens E, French K, Bremner J (2009b) Evidence for allelopathy as a mechanism of community composition change by an invasive exotic shrub, Chrysanthemoides monilifera spp. rotundata. Plant Soil 316:125–137

    Article  CAS  Google Scholar 

  • Escudero A, Albert M, Pita J et al (2000) Inhibitory effects of Artemisia herba-alba on the germination of the gypsophyte Helianthemum squamatum. Plant Ecol 148:71–80

    Article  Google Scholar 

  • Fogarty G, Facelli JM (1999) Growth and competition of Cytisus scoparius, an invasive shrub, and Australian native shrubs. Plant Ecol 144:27–35

    Article  Google Scholar 

  • Gomes M, Garcia Q (2013) Reactive oxygen species and seed germination. Biologia 68:351–357

    CAS  Google Scholar 

  • Gopal M, Gupta A, Arunachalam V et al (2007) Impact of azadirachtin, an insecticidal allelochemical from neem on soil microflora, enzyme and respiratory activities. Bioresour Technol 98:3154–3158

    Article  CAS  PubMed  Google Scholar 

  • Groves R (2008) Keynote address: research on bitou bush and boneseed—a work in progress. Plant Prot Q 23:15

    Google Scholar 

  • Gu Y, Wang P, Kong C (2009) Urease, invertase, dehydrogenase and polyphenoloxidase activities in paddy soil influenced by allelopathic rice variety. Eur J Soil Biol 45:436–441

    Article  CAS  Google Scholar 

  • Gupta P (1993) Seed vigour testing. In: Agarwal PK (ed) Handbook of seed testing. National Seed Corporation, New Delhi, pp 242–249

    Google Scholar 

  • Hale M, Moore L (1979) Factors affecting root exudation II: 1970–1978. Adv Agron 31:124

    Google Scholar 

  • Halligan JP (1975) Toxic terpenes from Artemisia californica. Ecology 56:999–1003

    Article  CAS  Google Scholar 

  • Halligan JP (1976) Toxicity of Artemisia californica to four associated herb species. Am Midl Nat 95:406–421

    Article  Google Scholar 

  • Harun MAYA, Robinson RW, Johnson J et al (2014) Allelopathic potential of Chrysanthemoides monilifera subsp. monilifera (boneseed): a novel weapon in the invasion processes. S Afr J Bot 93:157–166

    Article  Google Scholar 

  • Harun MAYA, Johnson J, Uddin MN et al (2015) The effects of temperature on decomposition and allelopathic phytotoxicity of boneseed litter. J Environ Sci 33:1–11

    Article  Google Scholar 

  • Helmig D, Daly RW, Milford J et al (2013) Seasonal trends of biogenic terpene emissions. Chemosphere 93:35–46

    Article  CAS  PubMed  Google Scholar 

  • Hussain MI, Reigosa MJ (2011) Allelochemical stress inhibits growth, leaf water relations, PSII photochemistry, non-photochemical fluorescence quenching, and heat energy dissipation in three C3 perennial species. J Exp Bot 62:4533–4545

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Inderjit, Callaway RM (2003) Experimental designs for the study of allelopathy. Plant Soil 256:1–11

  • Inderjit, Dakshini K (1995) On laboratory bioassays in allelopathy. Bot Rev 61:28–44

  • Inderjit, del Moral R (1997) Is separating resource competition from allelopathy realistic? Bot Rev 63:221–230

    Article  Google Scholar 

  • Inderjit, Duke S (2003) Ecophysiological aspects of allelopathy. Planta 217:529–539

    Article  CAS  PubMed  Google Scholar 

  • Inderjit, Weston L (2003) Root exudates: an overview. In: de Kroon H, Visser E (eds) Root ecology. Springer, Berlin, pp 235–255

    Chapter  Google Scholar 

  • Inderjit, Pollock JL, Callaway RM et al (2008) Phytotoxic effects of (±)-catechin in vitro, in soil, and in the field. PLoS One 3:e2536

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Inderjit, Evans H, Crocoll C et al (2011) Volatile chemicals from leaf litter are associated with invasiveness of a neotropical weed in Asia. Ecology 92:316–324

    Article  CAS  PubMed  Google Scholar 

  • Inskeep WP, Bloom PR (1985) Extinction coefficients of chlorophyll a and b in N,N-dimethylformamide and 80 % acetone. Plant Physiol 77:483–485

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Jambunathan N (2010) Determination and detection of reactive oxygen species (ROS), lipid peroxidation, and electrolyte leakage in plants. In: Sunkar R (ed) Plant stress tolerance. Springer, Berlin, pp 291–297

    Chapter  Google Scholar 

  • Jandová K, Dostál P, Cajthaml T (2014) Searching for Heracleum mantegazzianum allelopathy in vitro and in a garden experiment. Biol Invasions 17:987–1003

    Article  Google Scholar 

  • Jefferson LV, Pennacchio M (2003) Allelopathic effects of foliage extracts from four Chenopodiaceae species on seed germination. J Arid Environ 55:275–285

    Article  Google Scholar 

  • Khanna P (1997) Comparison of growth and nutrition of young monocultures and mixed stands of Eucalyptus globulus and Acacia mearnsii. For Ecol Manag 94:105–113

    Article  Google Scholar 

  • Kirstine W, Galbally I, Ye Y et al (1998) Emissions of volatile organic compounds (primarily oxygenated species) from pasture. J Geophys Res Atmos 103:10605–10619

    Article  CAS  Google Scholar 

  • Koitabashi R, Suzuki T, Kawazu T et al (1997) 1,8-Cineole inhibits root growth and DNA synthesis in the root apical meristem of Brassica campestris L. J Plant Res 110:1–6

    Article  CAS  Google Scholar 

  • Lawrence JG, Colwell A, Sexton OJ (1991) The ecological impact of allelopathy in Ailanthus altissima (Simaroubaceae). Am J Bot 78:948–958

    Article  Google Scholar 

  • Matthew K (1971) The high altitude ecology of the lantana. Indian For 97:170–171

    Google Scholar 

  • McAlpine KG, Timmins SM, Westbrooke I (2009) Boneseed (Chrysanthemoides monilifera ssp. monilifera) invasion effects on native regeneration in New Zealand coastal plant communities. N Z J Ecol 33:72–82

    Google Scholar 

  • McTavish HS, Davies NW, Menary RC (2000) Emission of volatiles from brown Boronia flowers: some comparative observations. Ann Bot 86:347–354

    Article  CAS  Google Scholar 

  • Midgley S, Turnbull J (2003) Domestication and use of Australian acacias: case studies of five important species. Aust Syst Bot 16:89–102

    Article  Google Scholar 

  • Muller WH (1965) Volatile materials produced by Salvia leucophylla: effects on seedling growth and soil bacteria. Bot Gaz 126:195–200

    Article  CAS  Google Scholar 

  • Muller WH, Muller CH (1964) Volatile growth inhibitors produced by Salvia species. Bull Torrey Bot Club 91:327–330

    Article  CAS  Google Scholar 

  • Nickerson K, Flory SL (2014) Competitive and allelopathic effects of the invasive shrub Schinus terebinthifolius (Brazilian peppertree). Biol invasions 17:1–10

  • Nilsson M-C (1994) Separation of allelopathy and resource competition by the boreal dwarf shrub Empetrum hermaphroditum Hagerup. Oecologia 98:1–7

    Article  Google Scholar 

  • Nishida N, Tamotsu S, Nagata N et al (2005) Allelopathic effects of volatile monoterpenoids produced by Salvia leucophylla: inhibition of cell proliferation and DNA synthesis in the root apical meristem of Brassica campestris seedlings. J Chem Ecol 31:1187–1203

    Article  CAS  PubMed  Google Scholar 

  • Ozgur R, Turkan I, Uzilday B et al (2014) Endoplasmic reticulum stress triggers ROS signalling, changes the redox state, and regulates the antioxidant defence of Arabidopsis thaliana. J Exp Bot 65:1377–1390

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Pandey D, Kauraw L, Bhan V (1993) Inhibitory effect of parthenium (Parthenium hysterophorus L.) residue on growth of water hyacinth (Eichhornia crassipes mart solms.) I. Effect of leaf residue. J Chem Ecol 19:2651–2662

    Article  CAS  PubMed  Google Scholar 

  • Quilchano C, Marañón T (2002) Dehydrogenase activity in Mediterranean forest soils. Biol Fert Soils 35:102–107

    Article  CAS  Google Scholar 

  • Rice EL (1965) Inhibition of nitrogen-fixing and nitrifying bacteria by seed plants IV. The inhibitors produced by Ambrosia elatior and A. psilostachya. Southwest Nat 10:248–255

    Article  Google Scholar 

  • Rice EL (1979) Allelopathy—an update. Bot Rev 45:15–109

    Article  CAS  Google Scholar 

  • Ridenour WM, Callaway RM (2001) The relative importance of allelopathy in interference: the effects of an invasive weed on a native bunchgrass. Oecologia 126:444–450

    Article  Google Scholar 

  • Saura-Mas S, Lloret F (2007) Leaf and shoot water content and leaf dry matter content of Mediterranean woody species with different post-fire regenerative strategies. Ann Bot 99:545–554

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Silva E, Overbeck G, Soares G (2014) Phytotoxicity of volatiles from fresh and dry leaves of two Asteraceae shrubs: evaluation of seasonal effects. S Afr J Bot 93:14–18

    Article  CAS  Google Scholar 

  • Singleton VL, Rossi JA Jr (1965) Colorimetry of total phenolics with phosphomolybdic–phosphotungstic acid reagents. Am J Enol Vitic 16:144–158

    CAS  Google Scholar 

  • Souto XC, Chiapusio G, Pellissier F (2000) Relationships between phenolics and soil microorganisms in spruce forests: significance for natural regeneration. J Chem Ecol 26:2025–2034

    Article  CAS  Google Scholar 

  • Steeghs M, Bais HP, de Gouw J et al (2004) Proton-transfer-reaction mass spectrometry as a new tool for real time analysis of root-secreted volatile organic compounds in Arabidopsis. Plant Physiol 135:47–58

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Sunmonu T, Van Staden J (2014) Phytotoxicity evaluation of six fast-growing tree species in South Africa. S Afr J Bot 90:101–106

    Article  CAS  Google Scholar 

  • Tejada M, García-Martínez AM, Gómez I et al (2010) Application of MCPA herbicide on soils amended with biostimulants: short-time effects on soil biological properties. Chemosphere 80:1088–1094

    Article  CAS  PubMed  Google Scholar 

  • Uddin MN, Robinson RW, Caridi D et al (2014) Suppression of native Melaleuca ericifolia by the invasive Phragmites australis through allelopathic root exudates. Am J Bot 101:479–487

    Article  PubMed  Google Scholar 

  • Velikova V, Yordanov I, Edreva A (2000) Oxidative stress and some antioxidant systems in acid rain-treated bean plants: protective role of exogenous polyamines. Plant Sci 151:59–66

    Article  CAS  Google Scholar 

  • Vivanco JM, Bais HP, Stermitz FR et al (2004) Biogeographical variation in community response to root allelochemistry: novel weapons and exotic invasion. Ecol Lett 7:285–292

    Article  Google Scholar 

  • Wang C-M, Li T-C, Jhan Y-L et al (2013) The impact of microbial biotransformation of catechin in enhancing the allelopathic effects of Rhododendron formosanum. PLoS One 8:e85162

    Article  PubMed Central  PubMed  Google Scholar 

  • Wardle D, Nicholson K, Rahman A (1996) Use of a comparative approach to identify allelopathic potential and relationship between allelopathy bioassays and “competition” experiments for ten grassland and plant species. J Chem Ecol 22:933–948

    Article  CAS  PubMed  Google Scholar 

  • Watkins AJ, Nicol GW, Shaw LJ (2009) Use of an artificial root to examine the influence of 8-hydroxyquinoline on soil microbial activity and bacterial community structure. Soil Biol Biochem 41:580–585

    Article  CAS  Google Scholar 

  • Weidenhamer JD (2006) Distinguishing allelopathy from resource competition: the role of density. In: Reigosa MJ, Pedrol N, González L (eds) Allelopathy. Springer, Berlin, pp 85–103

    Chapter  Google Scholar 

  • Weir TL, Park S-W, Vivanco JM (2004) Biochemical and physiological mechanisms mediated by allelochemicals. Curr Opin Plant Biol 7:472–479

    Article  CAS  PubMed  Google Scholar 

  • Weiss P, Adair R, Edwards P (1998) Chrysanthemoides monilifera (L.) T. Norl. Biol Aust Weeds 2:49–62

    Google Scholar 

  • Weiss P, Adair R, Edwards P et al (2008) Chrysanthemoides monilifera subsp. monilifera (L.) T. Norl. and subsp. rotundata (DC.) T. Norl. Plant Prot Q 23:3–14

    Google Scholar 

  • Weißhuhn K, Prati D (2009) Activated carbon may have undesired side effects for testing allelopathy in invasive plants. Basic Appl Ecol 10:500–507

    Article  Google Scholar 

  • Winters AJ, Adams MA, Bleby TM et al (2009) Emissions of isoprene, monoterpene and short-chained carbonyl compounds from Eucalyptus spp. in southern Australia. Atmos Environ 43:3035–3043

    Article  CAS  Google Scholar 

  • Wolińska A, Stępniewska Z (2012) Dehydrogenase activity in the soil environment. In: Canuto RA (ed) Dehydrogenases. INTECH, Croatia, pp 183–209

  • Xie W, Zhou J, Wang H et al (2009) Short-term effects of copper, cadmium and cypermethrin on dehydrogenase activity and microbial functional diversity in soils after long-term mineral or organic fertilization. Agric Ecosyst Environ 129:450–456

    Article  CAS  Google Scholar 

  • Zhang N, He X-D, Gao Y-B et al (2010) Pedogenic carbonate and soil dehydrogenase activity in response to soil organic matter in Artemisia ordosica community. Pedosphere 20:229–235

    Article  CAS  Google Scholar 

Download references

Acknowledgments

We would like to acknowledge Parks Victoria for permitting us to collect boneseed. Our warm thanks to all technical staffs and colleagues that supported the field works and laboratory experiments. The authors are grateful to Australian Government for the international post graduate research scholarship (IPRS) to the first author to conduct this research during his Ph.D. program.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Md. Abdullah Yousuf Al Harun.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Harun, M.A.Y.A., Johnson, J. & Robinson, R.W. The contribution of volatilization and exudation to the allelopathic phytotoxicity of invasive Chrysanthemoides monilifera subsp. monilifera (boneseed). Biol Invasions 17, 3609–3624 (2015). https://doi.org/10.1007/s10530-015-0983-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10530-015-0983-3

Keywords

Navigation