Skip to main content
Log in

Genetic traits leading to invasion: plasticity in cold hardiness explains current distribution of an invasive agricultural pest, Tetranychus evansi (Acari: Tetranychidae)

  • Original Paper
  • Published:
Biological Invasions Aims and scope Submit manuscript

Abstract

Among the factors limiting species distribution, low temperatures play a key role for tropical invasive species in temperate areas. Susceptibility to cold winter conditions has been recognized as the limiting factor in Europe for Tetranychus evansi, an invasive spider mite feeding on Solanaceous plants originated from tropical South America and now present on every continent except Australia. Two genetically distinct lineages of this species were introduced to Europe; one (lineage 1) is widely distributed, while the other (lineage 2) has a limited distribution. Whether this difference corresponds to differences in cold hardiness is evaluated here by assessing phenotypic response of T. evansi to the winter conditions that the mite encounters in the coldest parts of the current invaded area. We designed the thermal regimes to mimic winter conditions, including temperature fluctuations between day and night (L:D 8:16, 12:4 °C) and exposed mites to this regime for 5, 10 or 15 weeks. We tested T. evansi from three locations, one from the tropical native area (Piracicaba, Brazil) and two, corresponding to the two introduced lineages, from the temperate invaded area (lineage 1 from Nice and lineage 2 from Perpignan, France). After 5 weeks of treatment, mites from all the locations showed high survival rates but the two introduced populations grew, producing more than one offspring per female. After 10 weeks, survival rates declined for mites from Brazil and Perpignan, but not Nice. After 15 weeks, only the mites from Nice survived and produced offspring. Thus, mites belonging to the widespread lineage 1 exhibit increased cold tolerance suggesting broader adaptability, helping to explain its current geographical distribution.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Bailly X, Migeon A, Navajas M (2004) Analysis of microsatellite variation in the spider mite pest Tetranychus turkestani (Acari: Tetranychidae) reveals population genetic structure and raises questions about related ecological factors. Biol J Linn Soc 82:69–78

    Article  Google Scholar 

  • Baker HG (1965) Characteristics and modes of origin of weeds. In: Baker HG, Stebbins GL (eds) The genetics of colonizing species, Asilomar, California, USA, 1965. Academic Press, New York, pp 147–172

    Google Scholar 

  • Bale JS (1996) Insect cold hardiness: a matter of life and death. Eur J Entomol 93:369–382

    Google Scholar 

  • Blair AC, Blumenthal D, Hufbauer RA (2012) Hybridization and invasion: an experimental test with diffuse knapweed (Centaurea diffusa Lam.). Evol Appl 5:17–28. doi:10.1111/j.1752-4571.2011.00203.x

    Article  PubMed Central  PubMed  Google Scholar 

  • Bonato O (1999) The effect of temperature on life history parameters of Tetranychus evansi (Acari: Tetranychidae). Exp Appl Acarol 23:11–19

    Article  Google Scholar 

  • Boubou A, Migeon A, Roderick G, Navajas M (2011) Recent emergence and worldwide spread of the red tomato spider mite, Tetranychus evansi: genetic variation and multiple cryptic invasions. Biol Invasions 13:81–92. doi:10.1007/s10530-010-9791-y

    Article  Google Scholar 

  • Boubou A, Migeon A, Roderick GK, Auger P, Cornuet J-M, Magalhães S, Navajas M (2012) Test of colonisation scenarios reveals complex invasion history of the red tomato spider mite Tetranychus evansi. PLoS ONE 7:e35601. doi:10.1371/journal.pone.0035601

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Caldas D (1915) Um acarino parasita de batata. Chacaras e Quintais 12:434

    Google Scholar 

  • Carbonnelle S, Hance T, Migeon A, Baret P, Cros-Arteil S, Navajas M (2007) Microsatellite markers reveal spatial genetic structure of Tetranychus urticae (Acari: Tetranychidae) populations along a latitudinal gradient in Europe. Exp Appl Acarol 41:225–241

    Article  CAS  PubMed  Google Scholar 

  • Chen YH, Opp SB, Berlocher SH, Roderick GK (2006) Are bottlenecks associated with colonization? Genetic diversity and diapause variation of native and introduced Rhagoletis completa populations. Oecologia 149:656–667. doi:10.1007/s00442-006-0482-4

    Article  PubMed  Google Scholar 

  • Colinet H, Renault D, Hance T, Vernon P (2006) The impact of fluctuating thermal regimes on the survival of a cold-exposed parasitic wasp, Aphidius colemani. Physiol Entomol 31:234–240. doi:10.1111/j.1365-3032.2006.00511.x

    Article  Google Scholar 

  • Colinet H, Hance T, Vernon P, Bouchereau A, Renault D (2007) Does fluctuating thermal regime trigger free amino acid production in the parasitic wasp Aphidius colemani (Hymenoptera : Aphidiinae)? Comp Biochem Physiol A: Mol Integr Physiol 147:484–492. doi:10.1016/j.cbpa.2007.01.030

    Article  Google Scholar 

  • Cone WW (1985) Mating and chemical communication. In: Helle W, Sabelis MW (eds) Spider mites. Their biology, natural enemies and control, vol 1A. Elsevier, Amsterdam, pp 243–251

    Google Scholar 

  • di Lascio A, Rossi L, Costantini ML (2011) Different temperature tolerance of northern and southern European populations of a freshwater Isopod Crustacean species (Asellus aquaticus L.). Fundam Appl Limnol 179:193–201. doi:10.1127/1863-9135/2011/0179-0193

    Article  Google Scholar 

  • Elith J et al (2006) Novel methods improve prediction of species’ distributions from occurrence data. Ecography 29:129–151

    Article  Google Scholar 

  • Ellstrand NC, Schierenbeck KA (2000) Hybridization as a stimulus for the evolution of invasiveness in plants? Proc Natl Acad Sci 97:7043–7050. doi:10.1073/pnas.97.13.7043

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Gaston KJ (2009) Geographic range limits of species. Proc R Soc B Biol Sci 276:1391–1393. doi:10.1098/rspb.2009.0100

    Article  CAS  Google Scholar 

  • Gilioli G et al (2014) Environmental risk assessment for plant pests: a procedure to evaluate their impacts on ecosystem services. Sci Total Environ 468–469:475–486. doi:10.1016/j.scitotenv.2013.08.068

    Article  PubMed  Google Scholar 

  • Gotoh T et al (2010) Reproductive performance of seven strains of the tomato red spider mite Tetranychus evansi (Acari: Tetranychidae) at five temperatures. Exp Appl Acarol 52:239–259

    Article  CAS  PubMed  Google Scholar 

  • Helle W, Pijnacker LP (1985) Parthenogeneis, chromosomes and sex. In: Helle W, Sabelis MW (eds) Spider mites their biology, natural enemies and control, vol 1A., World Crop PestsElsevier Science Publisher B. V, Amsterdam, pp 129–139

    Google Scholar 

  • Hijmans RJ, Cameron SE, Parra JL, Jones PG, Jarvis A (2005) Very high resolution interpolated climate surfaces for global land areas. Int J Climatol 25:1965–1978

    Article  Google Scholar 

  • Hufbauer RA (2004) Population genetics of invasions: can we link neutral markers to management? Weed Technol 18:1522–1527. doi:10.1614/0890-037x(2004)018[1522:pgoicw]2.0.co;2

    Article  Google Scholar 

  • Hutchinson GE (1957) Concluding remarks. In: Cold Spring Harbour Symposium on Quantitative Biology, vol 22. pp 415–427. doi:10.1101/SQB.1957.022.01.039

  • Kearney M, Porter WP (2004) Mapping the fundamental niche: physiology, climate, and the distribution of a nocturnal lizard. Ecology 85:3119–3131. doi:10.1890/03-0820

    Article  Google Scholar 

  • Kenis M, Rabitsch W, Auger-Rozenberg MA, Roques A (2007) How can alien species inventories and interception data help us prevent insect invasions? Bull Entomol Res 97:489–502. doi:10.1017/s0007485307005184

    Article  CAS  PubMed  Google Scholar 

  • Kriticos DJ, Randall RP (2001) A comparison of systems to analyze potential weed distributions. In: Groves RH, Panetta FD, Virtue JG (eds) Weed risk assessment. pp 61–79

  • Kriticos DJ, Le Maitre DC, Webber BL (2013) Essential elements of discourse for advancing the modelling of species’ current and potential distributions. J Biogeogr 40:608–611. doi:10.1111/j.1365-2699.2012.02791.x

    Article  Google Scholar 

  • Lee CE (2002) Evolutionary genetics of invasive species. Trends Ecol Evol 17:386–391. doi:10.1016/s0169-5347(02)02554-5

    Article  Google Scholar 

  • Lee CE, Gelembiuk GW (2008) Evolutionary origins of invasive populations. Evol Appl 1:427–448. doi:10.1111/j.1752-4571.2008.00039.x

    Article  PubMed Central  PubMed  Google Scholar 

  • Liu S, Sheppard A, Kriticos D, Cook D (2011) Incorporating uncertainty and social values in managing invasive alien species: a deliberative multi-criteria evaluation approach. Biol Invasions 13:2323–2337. doi:10.1007/s10530-011-0045-4

    Article  CAS  Google Scholar 

  • Meynard CN, Migeon A, Navajas M (2013) Uncertainties in predicting species distributions under climate change: a case study using Tetranychus evansi (Acari: Tetranychidae), a widespread agricultural pest. PLoS ONE 8:e66445. doi:10.1371/journal.pone.0066445

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Migeon A (2007) Acarien rouge de la tomate: nouvelles observations et perspectives. PHM Revue Horticole 488:20–24

    Google Scholar 

  • Migeon A, Dorkeld F (2006–2013) Spider mites web: a comprehensive database for the Tetranychidae. INRA. http://www.montpellier.inra.fr/CBGP/spmweb. Accessed 2014-06-25 2014

  • Migeon A et al (2009) Modelling the potential distribution of the invasive tomato red spider mite, Tetranychus evansi (Acari: Tetranychidae). Exp Appl Acarol 48:199–212

    Article  PubMed  Google Scholar 

  • Moraes GJ de, McMurtry JA (1985) Comparison of Tetranychus evansi and T. urticae (Acari: Tetranychidae) as prey for eight species of phytoseiid mites. Entomophaga 30:393–397

  • Navajas M, Perrot-Minnot MJ, Lagnel J, Migeon A, Bourse T, Cornuet JM (2002) Genetic structure of a greenhouse population of the spider mite Tetranychus urticae: spatio-temporal analysis with microsatellite markers. Insect Mol Biol 11:157–165

    Article  CAS  PubMed  Google Scholar 

  • Navajas M, Migeon A, Estrada-Pena A, Mailleux AC, Servigne P, Petanovic R (2010) Mites and ticks (Acari). BIORISK Biodivers Ecosyst Risk Assess 4:149–192

    Article  Google Scholar 

  • Navajas M, Moraes GJ de, Auger P, Migeon A (2013) Review of the invasion of Tetranychus evansi: biology, colonization pathways, potential expansion and prospects for biological control. Exp Appl Acarol 59:43–65. doi:10.1007/s10493-012-9590-5

  • Nedved O, Lavy D, Verhoef HA (1998) Modelling the time-temperature relationship in cold injury and effect of high-temperature interruptions on survival in a chill-sensitive collembolan. Funct Ecol 12:816–824. doi:10.1046/j.1365-2435.1998.00250.x

    Article  Google Scholar 

  • Ohashi K, Kotsubo Y, Takafuji A (2003) Distribution and overwintering ecology of Tetranychus takafujii (Acari: Tetranychidae), a species found from Kinki district, Japan. J Acarol Soc Jpn 12:107–113

    Article  Google Scholar 

  • Parisod C, Trippi C, Gallad N (2005) Genetic variability and founder effect in the pitcher plant Sarracenia purpurea (Sarraceniaceae) in populations introduced into Switzerland: from inbreeding to invasion. Ann Bot 95:277–286. doi:10.1093/aob/mci023

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Park I, DeWalt SJ, Siemann E, Rogers WE (2012) Differences in cold hardiness between introduced populations of an invasive tree. Biol Invasions 14:2029–2038. doi:10.1007/s10530-012-0209-x

    Article  Google Scholar 

  • Parker IM, Rodriguez J, Loik ME (2003) An evolutionary approach to understanding the biology of invasions: local adaptation and general-purpose genotypes in the weed Verbascum thapsus. Conserv Biol 17:59–72. doi:10.1046/j.1523-1739.2003.02019.x

    Article  Google Scholar 

  • Paschoal AD (1971) O complexo Tetranychus telarius no Brasil (Acarina : Tetranychidae). Revista de Agricultura 46:3–8

    Google Scholar 

  • R Core Team (2013) R: A language and environment for statistical computing. 3.0 edn. R Foundation for Statistical Computing, Vienna, Austria

  • Richards CL, Bossdorf O, Muth NZ, Gurevitch J, Pigliucci M (2006) Jack of all trades, master of some? On the role of phenotypic plasticity in plant invasions. Ecol Lett 9:981–993. doi:10.1111/j.1461-0248.2006.00950.x

    Article  PubMed  Google Scholar 

  • Roques A (2012) Biological invasion. Integr Zool 7:227. doi:10.1111/j.1749-4877.2012.00311.x

    Article  PubMed  Google Scholar 

  • Roy HE, Roy DB, Roques A (2011) Inventory of terrestrial alien arthropod predators and parasites established in Europe. Biocontrol 56:477–504. doi:10.1007/s10526-011-9355-9

    Article  Google Scholar 

  • Sexton JP, McKay JK, Sala A (2002) Plasticity and genetic diversity may allow saltcedar to invade cold climates in North America. Ecol Appl 12:1652–1660. doi:10.2307/3099929

    Article  Google Scholar 

  • Sutherst RW (2003) Prediction of species geographical ranges. J Biogeogr 30:805–816

    Article  Google Scholar 

  • Sutherst RW, Maywald GF (1985) A computerised system for matching climates in ecology. Agric Ecosyst Environ 13:281–289

    Article  Google Scholar 

  • Sutherst RW, Maywald GF, Bottomley W, Bourne A (2004) Climex V2, user guide. CSIRO Publishing, Collingwood

    Google Scholar 

  • Thuiller W, Lavorel S, Sykes MT, Araujo MB (2006) Using niche-based modelling to assess the impact of climate change on tree functional diversity in Europe. Divers Distrib 12:49–60

    Article  Google Scholar 

  • Valiente AG, Juanes F, Nuñez P, Garcia-Vazquez E (2010) Brown trout (Salmo trutta) invasiveness: plasticity in life-history is more important than genetic variability. Biol Invasions 12:451–462. doi:10.1007/s10530-009-9450-3

    Article  Google Scholar 

  • Venette RC et al (2010) Pest risk maps for invasive alien species: A roadmap for improvement. Bioscience 60:349–362. doi:10.1525/bio.2010.60.5.5

    Article  Google Scholar 

  • Vila M et al (2010) How well do we understand the impacts of alien species on ecosystem services? A pan-European, cross-taxa assessment. Front Ecol Environ 8:135–144. doi:10.1890/080083

    Article  Google Scholar 

  • Williams DW, Liebhold AM (2002) Climate change and the outbreak ranges of two North American bark beetles. Agric For Entomol 4:87–99

    Article  Google Scholar 

Download references

Acknowledgments

Funding was provided by the French Agence Nationale de la Recherche (ANR 2010 BLAN 1715 02). This project operated as cofounding for the GI-046 grant from Genome Canada and the Ontario Genomics Institute and the GL2-01-035 grant from the Ontario Research Fund–Global Leadership in Genomics and Life Sciences. RAH acknowledges the support of the United States Department of Agriculture through the Colorado Experiment Station, Fulbright-France, as well as NSF RCN 0541673.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alain Migeon.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Migeon, A., Auger, P., Hufbauer, R. et al. Genetic traits leading to invasion: plasticity in cold hardiness explains current distribution of an invasive agricultural pest, Tetranychus evansi (Acari: Tetranychidae). Biol Invasions 17, 2275–2285 (2015). https://doi.org/10.1007/s10530-015-0873-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10530-015-0873-8

Keywords

Navigation