Skip to main content
Log in

Microsatellite markers reveal spatial genetic structure of Tetranychus urticae (Acari: Tetranychidae) populations along a latitudinal gradient in Europe

  • Published:
Experimental and Applied Acarology Aims and scope Submit manuscript

Abstract

The genetic structure of populations of the two-spotted spider mite Tetranychus urticae was investigated along a south–north European transect spanning from southern France to The Netherlands. Mites were collected on Urtica dioica in 6 sampling zones. Microsatellite variation at 5 loci revealed considerable genetic variation with an average heterozygozity of 0.49. Significant heterozygote deficiency was found in 7 populations out of the 18 samples analyzed and one of them was completely monomorphic. Tetranychus urticae populations show some level of genetic structuring. First, genetic differentiation between localities (F ST estimates) was significant for all comparisons. Second, the analysis of molecular variance, AMOVA, indicates that there is an effect, albeit low (9%), of the locality in accounting for allele frequency variance. Geographic distance emerges as a factor responsible for this genetic structure. The results are discussed in relation to the biological features of the species and the known patterns of migration. Related agronomical issues are addressed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • AGMP (1992) Guide des ravageurs du maïs. In Les guides. AGPM Bibliographie Nationale Française, Paris. 28 pp

  • AGRIS (1997) Acarien jaune. http://www.agris.be/fr/grcult/betsuc/acarien.asp

  • Bailly X, Migeon A, Navajas M (2004) Analysis of microsatellite variation in the spider mite pest Tetranychus turkestani (Acari: Tetranychidae) reveals population genetic structure and raises questions about related ecological factors. Biol J Linn Soc 82:69–78

    Article  Google Scholar 

  • Balloux F, Lugon-Moulin N (2002) The estimation of population differentiation with microsatellite markers. Mol Ecol 11:155–165

    Article  PubMed  Google Scholar 

  • Belkhir K, Borsa P, Chikhi L, Raufaste N, Bonhomme F (2000) GENETIX 4.03, logiciel sous Windows TM pour la génétique des populations., Laboratoire Génome, Populations, Interactions, CNRS UMR 5000. Université de Montpellier II, Montpellier

  • Bolland HR, Gutierrez J, Flechtmann CHW (1998) World catalogue of the spider mite family (Acari: Tetranychidae). Brill Academic Publishers, Leiden, 392 pp

    Google Scholar 

  • Byers JA (2002) Surface distance between points of Latitude and Longitude. http://www.wcrl.ars.usda.gov/cec/java/lat-long.htm

  • Cannon RJC (1998) The implications of predicted climate change for insect pests in the UK, with emphasis on non-indigenous species. Glob Change Biol 4:785–796

    Article  Google Scholar 

  • Carbonnelle S, Hance T, Lebrun P (2000) Influence of maize varieties on Tetranychus urticae Koch (Acari: Tetranychidae) infestation in Belgium. Mededelingen Faculteit Landbouwkundige en Toegepaste Biologische Wetenschappen Universiteit Gent 65:213–220

    Google Scholar 

  • Crooker A (1985) Embryonic and juvenile development. In Helle W, Sabelis MW (eds) Spider Mites: their biology, natural enemies and control, vol. 1A. Elsevier, Amsterdam, pp 149–163

  • de Boer R (1981) Genetic affinities between spider mite Tetranychus urticae populations in a non-agricultural area. II. Entomol Exp Appl 30:63–67

    Article  Google Scholar 

  • de Boer R (1982) Partial hybrid sterility between strains of the arrhenotokous spider mite, Tetranychus urticae complex (Acari, Tetranychidae). Genetica 58:23–33

    Article  Google Scholar 

  • Dupont LM (1979) On gene flow between Tetranychus urticae Koch, 1836 and Tetranychus cinnabarinus (Boisduval) Boudreaux, 1956 (Acari: Tetranychidae): synonymy between the two species. Entomol Exp Appl 25:297–303

    Article  Google Scholar 

  • Excoffier L, Smouse PE, Quattro JM (1992) Analysis of molecular variance inferred from metric distances amond DNA haplotypes: application to human mitochondrial DNA restriction data. Genetics 131:479–491

    PubMed  CAS  Google Scholar 

  • Feselstein (2001) PHYLIP: Phylogeny Inference Package, version 3.6, Department of genetics. University of Washington, Seattle

  • Fry JD (1989) Evolutionary adaptation to host plants in a laboratory population of the phytophagous mite Tetranychus urticae Koch. Oecologia 81:559–565

    Article  Google Scholar 

  • Goka K, Takafuji A (1995) Allozyme variations among populations of the two-spotted spider mite, Tetranychus urticae Koch, in Japan. Appl Entomol Zool 30:567–579

    CAS  Google Scholar 

  • Goka K, Takafuji A, Toda S, Hamamura T, Osakabe M, Komazaki S (1996) Genetic distinctness between two forms of Tetranychus urticae Koch (Acari: Tetranychidae) detected by electrophoresis. Exp Appl Acarol 20:683–693

    Article  Google Scholar 

  • Gotoh T, Bruin J, Sabelis MW, Menken SBJ (1993) Host race formation in Tetranychus urticae: genetic differentiation, host plant preference, and mate choice in a tomato and a cucumber strain. Entomol Exp Appl 68:171–178

    Article  Google Scholar 

  • Gotoh T, Shinkaji N (1981) Critical photoperiod and geographical variation of diapause induction in the two-spotted spider mite, Tetranychus urticae Koch (Acarina: Tetranychidae) in Japan. Jpn J Appl Entomol Zool 25:113–118

    Google Scholar 

  • Gould F (1979) Rapid host range evolution in a population of the phytophagous mite Tetranychus urticae Koch. Evolution 33:791–802

    Article  Google Scholar 

  • Guo SW, Thompson EA (1992) Performing the exact test of Hardy–Weinberg propositions for multiple alleles. Biometrics 48:361–372

    Article  PubMed  CAS  Google Scholar 

  • Hance T, Neuberg P, Noel-Lastelle C (1998) The use of fecundity, lobe biometry and the RAPD-PCR technique in order to compare strains of Tetranychus sp. Exp Appl Acarol 22:649–666

    Article  Google Scholar 

  • Hance T, Nihoul P, Van Impe G (1991) Infestations d’acariens tétranyques en culture de maïs en Belgique. Agricontact 226:1–3

    Google Scholar 

  • Helle W, Overmeer WPJ (1973) Variability in Tetranychid mites. Annu Rev Entomol 18:97–120

    Article  Google Scholar 

  • Helle W, Pieterse AH (1965) Genetic affinities between adjacent populations of spider mites (Tetranychus urticae Koch). Entomol Exp Appl 8:305–308

    Article  Google Scholar 

  • Helle W, Sabelis MW (eds) (1985) Spider mites: their biology, natural enemies and control, vol 1A. Elsevier, Amsterdam, 405 pp

  • Hijmans RJ, Cameron SE, Parra JL, Jones PG, Jarvis A (2005) Very high resolution interpolated climate surfaces for global land areas. Int J Climatol 25:1965–1978

    Article  Google Scholar 

  • Hinomoto N, Takafuji A (1994) Studies on the population structures of the two-spotted mite Tetranychus urticae Koch, by allozyme variability analysis. Appl Entomol Zool 29:259–266

    Google Scholar 

  • Hinomoto N, Takafuji A (1995) Genetic changes in the population structure of the two-spotted spider mite, Tetranychus urticae Koch (Acari: Tetranychidae), on vinyl-house strawberries. Appl Entomol Zool 30:521–528

    Google Scholar 

  • IRBAB (1998) Conditions de la culture betteravière en 1997. Le Betteravier 2:18–20

    Google Scholar 

  • IRBAB (1999) Conditions de la culture de l’année betteravière 1998. Le Betteravier 2:18–20

    Google Scholar 

  • Jeppson LR, Keifer HH, Baker EW (1975) Mites injurious to economic plants. University of California Press, Berkeley, xxiv + 614 pp

  • Kennedy GG, Smitley DR (1985) Dispersal. In: Helle W, Sabelis MW, (eds), Spider Mites: their biology, natural enemies and control. vol. 1A. Elsevier, Amsterdam, pp 233–242

  • Legrand G, Antoine M, Wauters A (1997) Présence de l’acarien jaune commun Tetranychus urticae Koch en culture de betterave sucrière en Belgique, en 1996 et test de sensibilite variétale de la betterave sucrière. Mededelingen Faculteit Landbouwkundige en Toegepaste Biologische Wetenschappen Universiteit Gent 62:301–308

    Google Scholar 

  • Legrand G, Wauters A (1996) Nouveaux ravageurs en betterave sucrière: risque d’infestations par les acariens. Le Betteravier 2:38

    Google Scholar 

  • Li J, Margolies DC (1993) Quantitative genetics of aerial dispersal behaviour and life-history traits in Tetranychus urticae. Heredity 70:544–552

    Google Scholar 

  • Lindgren E, Talleklint L, Polfeldt T (2000) Impact of climatic change on the northern latitude limit and population density of the disease-transmitting European tick Ixodes ricinus. Environ Health Perspect 108:119–123

    Article  PubMed  CAS  Google Scholar 

  • Logan JA, Wollkind DJ, Hoyt SC, Tanigoshi LK (1976) An analytic model for description of temperature dependent rate phenomena in arthropods. Environ Entomol 5:1133–1140

    Google Scholar 

  • Margolies DC (1987) Conditions eliciting aerial dispersal behavior in Banks grass mite, Oligonychus pratensis (Acari: Tetranychidae). Environ Entomol 16:928–932

    Google Scholar 

  • Margolies DC, Wrensch DL (1996) Temperature-induced changes in spider mite fitness: offsetting effects of development time, fecundity, and sex ratio. Entomol Exp Appl 78:111–118

    Article  Google Scholar 

  • Navajas M (1998) Host plant associations in the spider mite Tetranychus urticae (Acari: Tetranychidae): insights from molecular phylogeography. Exp App Acarol 22:201–214

    Article  Google Scholar 

  • Navajas M, Boursot P (2003) Nuclear ribosomal DNA monophyly versus mitochondrial DNA polyphyly in two closely related mite species : the influence of life history and molecular drive. Proc R Soc Lond B (Suppl.) 270:S124–S127

    Google Scholar 

  • Navajas M, Fenton B (2000) The application of molecular markers in the study of diversity in acarology: a review. Exp Appl Acarol 24:751–774

    Article  PubMed  CAS  Google Scholar 

  • Navajas M, Lagnel J, Gutierrez J, Boursot P (1998a) Species-wide homogeneity of nuclear ribosomal ITS2 sequences in the spider mite Tetranychus urticae contrasts with extensive mitochondrial COI polymorphism. Heredity 80:742–752

    Article  PubMed  CAS  Google Scholar 

  • Navajas M, Perrot-Minnot MJ, Lagnel J, Migeon A, Bourse T, Cornuet JM (2002) Genetic structure of a greenhouse population of the spider mite Tetranychus urticae: spatio-temporal analysis with microsatellite markers. Insect Mol Biol 11:157–165

    Article  PubMed  CAS  Google Scholar 

  • Navajas MJ, Thistlewood HMA, Lagnel J, Hughes C (1998b) Microsatellite sequences are under-represented in two mite genomes. Insect Mol Biol 7:249–256

    Article  PubMed  CAS  Google Scholar 

  • Nei M (1978) Estimation of average heterozygosity and genetic distance from a small number of individuals. Genetics 89:583–590

    PubMed  CAS  Google Scholar 

  • Osakabe M, Sakagami Y (1994) RFLP analysis of ribosomal DNA in sibling species of spider mite, genus Panonychus (Acari: Tetranychidae). Insect Mol Biol 3:63–66

    Article  PubMed  CAS  Google Scholar 

  • Overmeer WPJ, van Zon AQ (1976) Partial reproductive incompatibility between populations of spider mites (Acarina: Tetranychidae). Entomol Exp Appl 20:225–236

    Article  Google Scholar 

  • Parmesan C, Ryrholm N, Stefanescu C (1999) Poleward shifts in geographical ranges of butterfly species associated with regional warming. Nature 399:579–583

    Article  CAS  Google Scholar 

  • Pemberton JM, Slate J, Bancroft DR, Barrett JA (1995) Nonamplifying allelles at microsatellite loci: a caution for parentage and population studies. Molecular Ecol 4:249–252

    CAS  Google Scholar 

  • Perrot-Minnot MJ, Cheval B, Migeon A, Navajas M (2002) Contrasting effects of Wolbachia on cytoplasmic incompatibility and fecundity in the haplodiploid mite Tetranychus urticae. J Evol Biol 15:808–817

    Article  Google Scholar 

  • Raymond M, Rousset F (1995) GENEPOP a population genetics software for exact tests and ecumenicism, version 2. J Hered 86:248–269

    Google Scholar 

  • Rice WR (1989) Analyzing tables of statistical tests. Evolution 43:223–225

    Article  Google Scholar 

  • Rousset F (1997) Genetic differentiation and estimation of gene flow from F-statistics under isolation by distance. Genetics 145:1219–1228

    PubMed  CAS  Google Scholar 

  • Sabelis MW, Dicke M (1985) Long-range dispersal and searching behaviour. In: Helle W, Sabelis MW (eds) Spider mites: their biology, natural enemies and control. vol. 1B. Elsevier, Amsterdam, pp 141–160

  • Schneider S, Roesli D, Excoffier L (2000) A software for population genetics data analysis, Genetics and Biometry Laboratory. University of Geneva, Geneva

    Google Scholar 

  • Smitley DR, Kennedy GG (1985) Photo-oriented aerial-dispersal behavior of Tetranychus urticae (Acari: Tetranychidae) enhances escape from the leaf surface. Ann Entomological Soc Am 78:609–614

    Google Scholar 

  • Sombroek WG, Gommes R (1996) The climat change-agricultural conundrum. In: Bazzad F, Sombroek WG (eds) Global climate change and agricultural production: direct and indirect effects of changing hydrological, pedological and plant physiological processes. John Wiley, Chichester, pp 1–14

  • Srutek M, Teckelmann M (1998) Review of biology and ecology of Urtica dioica. Preslia (Prague) 70:1–19

    Google Scholar 

  • Sugasawa J, Kitashima Y, Gotoh T (2002) Hybrid affinities between the green and the red forms of the two-spotted spider mite Tetranychus urticae (Acari: Tetranychidae) under laboratory and semi-natural conditions. Appl Entomol Zool 37:127–139

    Article  Google Scholar 

  • Suski ZW, Naegele JA (1963) Light response in the two-spotted spider mite. II: behaviour of the sedentary and dispersal phases. In: Naegele JA (ed) Advances in acarology. vol. I. Comstock Publishing Associates, Ithaca, New-York, pp 445–453

  • Takafuji A, So PM, Tsuno N (1991) Inter- and intra-population variations in diapause attribute of the two-spotted spider mite, Tetranychus urticae Koch, in Japan. Res Popul Ecol (Kyoto) 33:331–344

    Article  Google Scholar 

  • Tsagkarakou A, Navajas M, Lagnel J, Pasteur N (1997) Population structure in the spider mite Tetranychus urticae (Acari: Tetranychidae) from Crete based on multiple allozymes. Heredity 78:84–92

    Article  PubMed  CAS  Google Scholar 

  • Tsagkarakou A, Navajas M, Papaioannou-Souliotis P, Pasteur N (1998) Gene flow among Tetranychus urticae (Acari: Tetranychidae) populations in Greece. Mol Ecol 6:305–314

    Google Scholar 

  • van de Bund CF, Helle W (1960) Investigations on the Tetranychus urticae complex in N. W. Europe (Acari: Tetranychidae). Entomol Exp Appl 3:142–156

    Google Scholar 

  • van de Vrie M, McMurtry JA, Huffaker CB (1972) Biology, ecology, and pest status, and host-plant relations of Tetranychids. Hilgardia 41:343–432

    Google Scholar 

  • van den Boom CEM, van Beek TA, Dicke M (2003) Differences among plant species in acceptance by the spider mite Tetranychus urticae Koch. J Appl Entomol 127:177–183

    Article  Google Scholar 

  • Werren JH (1998) Wolbachia and Speciation. In: Howard DJ, Berlocher SH (eds) Endless forms. Oxford University Press, Oxford, 470 pp

  • Wright S (1969) The theory of gene frequencies. Evolution and the genetics of populations. The University of Chicago Press, Chicago, 511 pp

  • Yano S, Wakabayashi M, Takabayashi J, Takafuji A (1998) Factors determining the host plant range of the phytophagous mite, Tetranychus urticae (Acari: Tetranychidae): a method for quantifying host plant acceptance. Exp Appl Acarol 22:595–601

    Article  Google Scholar 

  • Young SSY, Wrensch DL, Kongchuensin M (1985) Geographic variations and combining abilities in the two-spotted spider mite, Tetranychus urticae. Entomol Exp Appl 39:109–113

    Article  Google Scholar 

  • Zhang ZQ, Jacobson RJ (2000) Using adult female morphological characters for differentiating Tetranychus urticae complex (Acari: Tetranychidae) from greenhouse tomato crops in UK. Syst Appl Acarol 5:69–76

    Google Scholar 

  • Zhou XL, Harrington R, Woiwood IP, Perry JN, Clark SJ (1996) Impact of climate change of aphid flight phenology. Asp Appl Biol 45:299–305

    Google Scholar 

Download references

Acknowledgments

This research was supported by Fonds pour la Formation à la Recherche dans l’Industrie et dans l’Agriculture (F.R.I.A.) of Belgium.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Maria Navajas.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Carbonnelle, S., Hance, T., Migeon, A. et al. Microsatellite markers reveal spatial genetic structure of Tetranychus urticae (Acari: Tetranychidae) populations along a latitudinal gradient in Europe. Exp Appl Acarol 41, 225–241 (2007). https://doi.org/10.1007/s10493-007-9068-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10493-007-9068-z

Keywords

Navigation