Skip to main content
Log in

Contributions of temporal segregation, oviposition choice, and non-additive effects of competitors to invasion success of Aedes japonicus (Diptera: Culicidae) in North America

  • Original Paper
  • Published:
Biological Invasions Aims and scope Submit manuscript

Abstract

The mosquito Aedes japonicus (Diptera: Culicidae) has spread rapidly through North America since its introduction in the 1990s. The mechanisms underlying its establishment in container communities occupied by competitors Aedes triseriatus and Aedes albopictus are unclear. Possibilities include (A) temporal separation of A. japonicus from other Aedes, (B) oviposition avoidance by A. japonicus of sites containing heterospecific Aedes larvae, and (C) non-additive competitive effects in assemblages of multiple Aedes. Containers sampled throughout the summer in an oak-hickory forest near Eureka, MO showed peak abundance for A. japonicus occurring significantly earlier in the season than either of the other Aedes species. Despite this, A. japonicus co-occurred with one other Aedes species in 53 % of samples when present, and co-occurred with both other Aedes in 18 % of samples. In a field oviposition experiment, A. japonicus laid significantly more eggs in forest edge containers than in forest interior containers, but did not avoid containers with low or high densities of larvae of A. triseriatus, A. albopictus, or both, compared to containers without larvae. Interspecific competitive effects (measured as decrease in the index of performance, λ′) of A. triseriatus or A. albopictus alone on A. japonicus larvae were not evident at the densities used, but the effect of both Aedes combined was significantly negative and super-additive of effects of individual interspecific competitors. Thus, neither oviposition avoidance of competitors nor non-additive competitive effects contribute to the invasion success of A. japonicus in North America. Distinct seasonal phenology may reduce competitive interactions with resident Aedes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Albeny-Simões D, Murrell EG, Elliot SL, Andrade MR, Lima E, Juliano SA, Vilela EF (2014) Attracted to the enemy: Aedes aegypti prefers oviposition sites with predator-killed conspecifics. Oecologia 175:481–492

    Article  PubMed  Google Scholar 

  • Allan SA, Kline DL (1998) Larval rearing water and preexisting eggs influence oviposition by Aedes aegypti and Ae. albopictus (Diptera: Culicidae). J Med Entomol 35:943–947

    Article  CAS  PubMed  Google Scholar 

  • Alto BW (2011) Interspecific larval competition between invasive Aedes japonicus and native Aedes triseriatus (Diptera: Culicidae) and adult longevity. J Med Entomol 48:232–242

    Article  PubMed  Google Scholar 

  • Andreadis TG, Wolfe RJ (2010) Evidence for reduction of native mosquitoes with increased expansion of invasive Ochlerotatus japonicus japonicus (Diptera: Culicidae) in the northeastern United States. J Med Entomol 47:43–52

    Article  PubMed  Google Scholar 

  • Andreadis TG, Anderson JF, Munstermann LE, Wolfe RJ, Florin DA (2001) Discovery, distribution, and abundance of the newly introduced mosquito Ochlerotatus japonicus (Diptera: Culicidae) in Connecticut, USA. J Med Entomol 38:774–779

    Article  CAS  PubMed  Google Scholar 

  • Armistead JS, Arias JR, Nishimura N, Lounibos LP (2008a) Interspecific larval competition between Aedes albopictus and Aedes japonicus (Diptera: Culicidae) in northern Virginia. J Med Entomol 45:629–637

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Armistead JS, Nishimura N, Escher RL, Lounibos LP (2008b) Larval competition between Aedes japonicus and Aedes atropalpus (Diptera: Culicidae) in simulated rock pools. J Vector Ecol 33:238–246

    Article  PubMed Central  PubMed  Google Scholar 

  • Armistead JS, Nishimura N, Arias JR, Lounibos LP (2012) Community ecology of container mosquitoes (Diptera: Culicidae) in Virginia following invasion by Aedes japonicus. J Med Entomol 49:1318–1327

    Article  PubMed Central  PubMed  Google Scholar 

  • Bartlett-Healy K, Unlu I, Obenauer P, Hughes T, Healy S, Crepeau T, Farajollahi A, Kesavaraju B, Fonseca D, Schoeler G, Gaugler R, Strickman D (2012) Larval mosquito habitat utilization and community dynamics of Aedes albopictus and Aedes japonicus (Diptera: Culicidae). J Med Entomol 49:813–824

    Article  PubMed  Google Scholar 

  • Billick I, Case TJ (1994) Higher order interactions in ecological communities: What are they and how can they be detected? Ecology 75:1529–1543

    Article  Google Scholar 

  • Burger JF, Davis H (2008) Discovery of Ochlerotatus japonicus japonicus (Theobald) (Diptera: Culicidae) in southern New Hampshire, USA and its subsequent increase in abundance in used tire casings. Entomol News 119:439–444

    Article  Google Scholar 

  • Callaway RM, Ridenour WM (2004) Novel weapons: invasive success and the evolution of increased competitive ability. Front Ecol Environ 2:436–443

    Article  Google Scholar 

  • Cassell DL (2002) A randomization-test wrapper for SAS PROCs. http://www2.sas.com/proceedings/sugi27/p251-27.pdf

  • Chmielewski MW, Khatchikian C, Livdahl T (2010) Estimating the per capita rate of population change: How well do life-history surrogates perform? Ann Entomol Soc Am 103:734–741

    Article  Google Scholar 

  • Dormann CF, Roxburgh SH (2005) Experimental evidence rejects pairwise modelling approach to coexistence in plant communities. Proc R Soc B Biol 272:1279–1285

    Article  Google Scholar 

  • Engel EC, Weltzin JF (2008) Can community composition be predicted from pairwise species interactions? Plant Ecol 195:77–85

    Article  Google Scholar 

  • Fader JE, Juliano SA (2014) Oviposition habitat selection by container-dwelling mosquitoes: responses to cues of larval and detritus abundances in the field. Ecol Entomol 39:245–252

    Article  PubMed Central  PubMed  Google Scholar 

  • Fonseca DM, Unlu I, Crepeau T, Farajollahi A, Healy SP, Bartlett-Healy K, Strickman D, Gaugler R, Hamilton G, Kline D, Clark GG (2013) Area-wide management of Aedes albopictus. Part 2: gauging the efficacy of traditional integrated pest control measures against urban container mosquitoes. Pest Manag Sci 69:1351–1361

    Article  CAS  PubMed  Google Scholar 

  • Fortner AM, Weltzin JF (2007) Competitive hierarchy for four common old-field plant species depends on resource identity and availability 1. J Torrey Bot Soc 134:166–176

    Article  Google Scholar 

  • Frean M, Abraham ER (2001) Rock–scissors–paper and the survival of the weakest. Proc R Soc B Biol 268:1323–1327

    Article  CAS  Google Scholar 

  • Gallitano S, Blaustein L, Vonesh J (2005) First occurrence of Ochlerotatus japonicus in Missouri. J Vector Ecol 30:347–348

    PubMed  Google Scholar 

  • Hardstone MC, Andreadis TG (2012) Weak larval competition between the invasive mosquito Aedes japonicus japonicus (Diptera: Culicidae) and three resident container-inhabiting mosquitoes in the laboratory. J Med Entomol 49:277–285

    Article  PubMed  Google Scholar 

  • Ho BC, Ewert A, Chew L (1989) Interspecific competition among Aedes aegypti, Ae. albopictus, and Ae. triseriatus (Diptera: Culicidae): larval development in mixed cultures. J Med Entomol 26:615–623

    Article  CAS  PubMed  Google Scholar 

  • Johnson BJ, Sukhdeo MVK (2013) Successional mosquito dynamics in surrogate treehole and ground-container habitats in the northeastern United States: Where does Aedes albopictus fit in? J Vector Ecol 38:168–174

    Article  CAS  PubMed  Google Scholar 

  • Juliano SA (1998) Species introduction and replacement among mosquitoes: interspecific resource competition or apparent competition? Ecology 79:255–268

    Article  Google Scholar 

  • Juliano SA (2009) Species interactions among larval mosquitoes: context dependence across habitat gradients. Annu Rev Entomol 54:37–56

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Juliano SA, Lounibos LP (2005) Ecology of invasive mosquitoes: effects on resident species and on human health. Ecol Lett 8:558–574

    Article  PubMed Central  PubMed  Google Scholar 

  • Juliano SA, Lounibos LP, Nishimura N, Greene K (2010) Your worst enemy could be your best friend: predator contributions to invasion resistance and persistence of natives. Oecologia 162:709–718

    Article  PubMed Central  PubMed  Google Scholar 

  • Kaufman MG, Fonseca DM (2014) Invasion biology of Aedes japonicus japonicus (Diptera: Culicidae). Annu Rev Entomol 59:31–49

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Kaufman MG, Stanuszek WW, Brouhard EA, Knepper RG, Walker ED (2012) Establishment of Aedes japonicus japonicus and its colonization of container habitats in Michigan. J Med Entomol 49:1307–1317

    Article  PubMed Central  PubMed  Google Scholar 

  • Kesavaraju B, Alto B, Afify A, Gaugler R (2010) Malathion influences competition between Aedes albopictus and Aedes japonicus. J Med Entomol 47:1011–1018

    Article  PubMed  Google Scholar 

  • Kesavaraju B, Khan DF, Gaugler R (2011) Behavioral differences of invasive container-dwelling mosquitoes to a native predator. J Med Entomol 48:526–532

    Article  PubMed  Google Scholar 

  • Leisnham PT, LaDeau SL, Juliano SA (2014) Spatial and temporal habitat segregation of mosquitoes in urban Florida. PLoS One 9(3):e91655

    Article  PubMed Central  PubMed  Google Scholar 

  • Livdahl TP, Sugihara G (1984) Non-linear interactions of populations and the importance of estimating per capita rates of change. J Anim Ecol 53:573–580

    Article  Google Scholar 

  • Lounibos LP (2002) Invasions by insect vectors of human disease. Annu Rev Entomol 47:233–266

    Article  CAS  PubMed  Google Scholar 

  • Merritt RW, Dadd RH, Walker ED (1992) Feeding behavior, natural food, and nutritional relationships of larval mosquitoes. Annu Rev Entomol 37:349–374

    Article  CAS  PubMed  Google Scholar 

  • Mitchell CE, Power AG (2003) Release of invasive plants from fungal and viral pathogens. Nature 421:625–627

    Article  CAS  PubMed  Google Scholar 

  • Moles AT, Gruber MA, Bonser SP (2008) A new framework for predicting invasive plant species. J Ecol 96:13–17

    Google Scholar 

  • Moyle PB (1986) Fish introductions into North America: patterns and ecological impact. In: Mooney HA, Drake JA (eds) Ecology of biol invasions of North America and Hawaii. Springer, New York, pp 27–43

    Chapter  Google Scholar 

  • Murrell EG, Juliano SA (2013) Predation resistance does not trade off with competitive ability in early-colonizing mosquitoes. Oecologia 173:1033–1042

    Article  PubMed Central  PubMed  Google Scholar 

  • Murrell EG, Ives AR, Juliano SA (2014) Intrinsic and extrinsic drivers of succession: effects of habitat age and season on an aquatic insect community. Ecol Entomol 39:316–324

    Article  PubMed  Google Scholar 

  • O’Donnell DL, Armbruster P (2007) Comparison of larval foraging behavior of Aedes albopictus and Aedes japonicus (Diptera: Culicidae). J Med Entomol 44:984–989

    Article  PubMed  Google Scholar 

  • Peacor SD, Werner EE (1997) Trait-mediated indirect interactions in a simple aquatic food web. Ecology 78:1146–1156

    Article  Google Scholar 

  • Peyton EL, Campbell SR, Candeletti TM, Romanowski M, Crans WJ (1999) Aedes (Finlaya) japonicus japonicus (Theobald), a new introduction into the United States. J Am Mosq Control 15:238–241

    CAS  Google Scholar 

  • Preisser EL, Bolnick DI, Benard MF (2005) Scared to death? The effects of intimidation and consumption in predator-prey interactions. Ecology 86:501–509

    Article  Google Scholar 

  • Reiskind MH, Wilson ML (2008) Interspecific competition between larval Culex restuans Theobald and Culex pipiens L. (Diptera: Culicidae) in Michigan. J Med Entomol 45:20–27

    Article  PubMed  Google Scholar 

  • Reiskind MH, Lounibos LP (2013) Spatial and temporal patterns of abundance of Aedes aegypti L. (Stegomyia aegypti) and Aedes albopictus (Skuse) [Stegomyia albopictus (Skuse)] in southern Florida. Med Vet Entomol 27:421–429

    Article  CAS  PubMed  Google Scholar 

  • Rochlin I, Ninivaggi DV, Hutchinson ML, Farajollahi A (2013) Climate change and range expansion of the Asian tiger mosquito (Aedes albopictus) in northeastern USA: implications for public health practitioners. PLoS One 4:e60874

    Article  Google Scholar 

  • Sakai AK, Allendorf FW, Holt JS, Lodge DM, Molofsky J, With KA, Baughman S, Cabin RJ, Cohen JE, Ellstrand NC, McCauley DE, O’Neil P, Parker IM, Thompson JN, Weller SG (2001) The population biology of invasive species. Annu Rev Ecol Syst 32:305–332

    Article  Google Scholar 

  • Skiff JJ, Yee DA (2014) Behavioral differences among four co-occurring species of container mosquito larvae: effects of depth and resource environments. J Med Entomol 51:375–381

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Snyder WE, Clevenger GM, Eigenbrode SD (2004) Intraguild predation and successful invasion by introduced ladybird beetles. Oecologia 140:559–565

    Article  PubMed  Google Scholar 

  • Sumba LA, Okoth K, Deng AL, Githure J, Knols BG, Beier JC, Hassanali A (2004) Daily oviposition patterns of the African malaria mosquito Anopheles gambiae Giles (Diptera: Culicidae) on different types of aqueous substrates. J Circadian Rhythms 2:6. doi:10.1186/1740-3391-2-6

    Article  PubMed Central  PubMed  Google Scholar 

  • Sunihara T, Ishizaka K, Mogi M (2002) Habitat size: a factor determining the opportunity for encounters between mosquito larvae and aquatic predators. J Vector Ecol 27:8–20

    Google Scholar 

  • Vonesh JR, Osenberg CW (2003) Multi-predator effects across life-history stages: non-additivity of egg-and larval-stage predation in an African treefrog. Ecol Lett 6:503–508

    Article  Google Scholar 

  • Vonesh J, Blaustein L (2010) Predator-induced shifts in mosquito oviposition site selection: a meta-analysis and implications for vector control. Isr J Ecol Evol 56:263–279

    Article  Google Scholar 

  • Wachira SW, Ndung U, Njagi PGN, Hassanali A (2010) Comparative responses of ovipositing Anopheles gambiae and Culex quinquefasciatus females to the presence of Culex egg rafts and larvae. Med Vet Entomol 24:369–374

    Article  CAS  PubMed  Google Scholar 

  • Weigelt A, Schumacher J, Walther T, Bartelheimer M, Steinlein T, Beyschlag W (2007) Identifying mechanisms of competition in multi-species communities. J Ecol 95:53–64

    Article  Google Scholar 

  • Werner EE, Peacor SD (2003) A review of trait-mediated indirect interactions in ecological communities. Ecology 84:1083–1100

    Article  Google Scholar 

  • Yee DA, Kesavaraju B, Juliano SA (2004) Larval feeding behavior of three co-occurring species of container mosquitoes. J Vector Ecol 29:315–322

    PubMed Central  PubMed  Google Scholar 

  • Yee DA, Kneitel JM, Juliano SA (2010) Environmental correlates of abundances of mosquito species and stages in discarded vehicle tires. J Med Entomol 47:53–62

    Article  PubMed Central  PubMed  Google Scholar 

  • Yoshioka M, Couret J, Kim F, McMillan J, Burkot TR, Dotson EM, Kitron U, Vazquez-Prokopec GM (2012) Diet and density dependent competition affect larval performance and oviposition site selection in the mosquito species Aedes albopictus (Diptera: Culicidae). Parasite Vector 5:225

    Article  Google Scholar 

  • Zahiri N, Rau ME (1998) Oviposition attraction and repellency of Aedes aegypti (Diptera: Culicidae) to waters from conspecifics larvae subjected to crowding, confinement, starvation, or infection. J Med Entomol 35:782–787

    Article  CAS  PubMed  Google Scholar 

  • Zaiko A, Olenin S, Daunys D, Nalepa T (2007) Vulnerability of benthic habitats to the aquatic invasive species. Biol Invasions 9:703–714

    Article  Google Scholar 

  • Zarnetske PL, Gouhier TC, Hacker SD, Seabloom EW, Bokil VA (2013) Indirect effects and facilitation among native and non-native species promote invasion success along an environmental stress gradient. J Ecol 101:905–915

    Article  Google Scholar 

Download references

Acknowledgments

We thank M. Dunham, B. Kuyken, S. Brandt, and J. Cellini for their assistance with the laboratory experiment, J. Ahlert and C. Jordan for assistance with the colonization study, J. M. Chase and the Tyson Research staff for use of their facilities, D. Fonseca and Headlee Research Laboratory Mosquito Research and Control Unit, Rutgers University, for A. japonicus eggs, P. R. Crump for statistical assistance, and three anonymous reviewers for their helpful comments on the manuscript. This research was funded by NIAID Grant R15 AI075306-01 and AARA supplement 3R15AI075306-01S1 to SAJ. BHN was partially supported during manuscript writing period by the Oklahoma Agricultural Experiment Station (OKL-02909).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ebony G. Murrell.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Murrell, E.G., Noden, B.H. & Juliano, S.A. Contributions of temporal segregation, oviposition choice, and non-additive effects of competitors to invasion success of Aedes japonicus (Diptera: Culicidae) in North America. Biol Invasions 17, 1669–1681 (2015). https://doi.org/10.1007/s10530-014-0824-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10530-014-0824-9

Keywords

Navigation