Skip to main content

Advertisement

Log in

Vulnerability of benthic habitats to the aquatic invasive species

  • Original Paper
  • Published:
Biological Invasions Aims and scope Submit manuscript

Abstract

A comparative vulnerability analysis of 16 selected benthic habitat types in the SE Baltic Sea waters and the Curonian lagoon, including Klaipeda strait, was performed using long-term monitoring datasets (1980–2003) and results of several other surveys in the lagoon and the sea. Results indicated that invasive species richness (number of alien species per habitat) in lagoon habitats was significantly higher than in the sea. Habitats formed by artificial rock and stone, sand, mud, and habitats modified by zebra mussel shell deposits appeared to be the most invaded. Highest invasive species richness occurred in habitats with high native species richness indicating that the main factors driving native species distribution (such as favourable physical conditions, habitat alterations generated by human or/and biotic activities) are also driving aquatic invaders. Physical factors distinguished to be the most important for native and invasive species distribution were salinity, depth range (expressed by the maximal and minimal depths difference within a habitat), shallowness of a habitat (expressed by a minimal depth), and availability of a hard substrate.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Brooks ML (1999). Habitat invasibility and dominance by alien annual plants in the western Mojave Desert. Biol Invasions 1:325–337

    Article  Google Scholar 

  • Bubinas A, Vaitonis G (2003) The analysis of the structure, productivity, and distribution of zoobenthocenoses in the Lithuanian economic zone of the Baltic Sea and the importance of some benthic species to fish diet. Acta Zoologica Lituanica 13(2):114–124

    Google Scholar 

  • Bubinas A, Vaitonis G (2005) Benthic communities of the Klaipeda port aquatory. Acta Zoologica Lituanica, 15(4):305–311

    Google Scholar 

  • Cohen AN, Carlton JT (1998) Accelerating invasion rate in a highly invaded estuary. Science 279:555–558

    Article  PubMed  CAS  Google Scholar 

  • Daunys D, Olenin S (1999) Bottom macrofauna communities in the littoral zone of the Curonian Lagoon. Ekologija 2:19–27 (in Lithuanian with English summary)

    Google Scholar 

  • Davis MA, Grime JPh, Thompson K (2000) Fluctuating resources in plant communities: a general theory of invisibility. J Ecol 88(3):528–534

    Article  Google Scholar 

  • Elton CS (1958) The ecology of Invasions by Animals and Plants. Methuen, London

    Google Scholar 

  • EUNIS (2005). Habitat classification. In: European Nature Information System http://eunis.eea.eu.int/habitats.jsp. Cited 20 Sept. 2005

  • Fuller MM, Drake JA (2000). Modeling the invasion process. In: Claudi R, Leach JH (eds) Nonindigenous freshwater organisms – vectors, biology, and impacts. Lewis Publishers, USA:411–413

    Google Scholar 

  • Gollasch S (2002). Hazard analysis of aquatic species invasions. In: Leppäkoski E, Gollasch S, Olenin S (eds) Invasive aquatic species of Europe. Kluwer Academic Publishers, Netherlands:447–455

    Google Scholar 

  • Hewitt ChL, Hayes KR (2002). Risk assessment of marine biological invasions. In: Leppäkoski E, Gollasch S, Olenin S (eds) Invasive aquatic species of Europe. Kluwer Academic Publishers, Netherlands:456–466

    Google Scholar 

  • Herbold B, Moyle PB (1986) Introduced species and vacant niches. Am Nat 128(5):751–760

    Article  Google Scholar 

  • Holdgate MW (1986) Summary and conclusions: characteristics and consequences of biological invasions. Phil Trans Roy Soc Lond B 314:733–742

    Article  Google Scholar 

  • Kennedy TA, Naeem Sh, Howe KM, Knops JMN, Tilman D, Reich P (2002) Biodiversity as a barrier to ecological invasion. Nature 417:636–638

    Article  PubMed  CAS  Google Scholar 

  • Leppäkoski E, Olenin S (2000) Non-native species and rates of spread: lessons from the brackish Baltic Sea. Biol Invasions 2:151–163

    Article  Google Scholar 

  • Leppäkoski E, Gollasch S, Olenin S (2002a) Alien Species in European Waters. In: Leppäkoski E, Gollasch S, Olenin S (eds) Invasive aquatic species of Europe – distribution, impact and management. Dordrecht, Boston, London. Kluwer Academic Publishers:1–6

    Google Scholar 

  • Leppäkoski E, Olenin S, Gollasch S (2002b) The Baltic Sea – a field laboratory for invasion biology. In: Leppäkoski E, Gollasch S, Olenin S (eds) Invasive aquatic species of Europe – distribution, impact and management. Dordrecht, Boston, London. Kluwer Academic Publishers:253–259

    Google Scholar 

  • Levine JM (2000) Plant diversity and biological invasions: relating local process to community pattern. Science 288:852–854

    Article  PubMed  CAS  Google Scholar 

  • Li HW, Rossignol PhA, Castillo G (2000) Risk analysis of species introductions: insights from qualitative modelling. In: Claudi R, Leach JH (eds) Nonindigenous freshwater organisms – vectors, biology, and impacts. Lewis Publishers, USA:431–447

    Google Scholar 

  • Lonsdale WM (1999) Global patterns of plant invasions and the concept of invasibility. Ecology 80:1522–1536

    Article  Google Scholar 

  • Mack RN, Simberloff D, Lonsdale WM, Evans H, Clout M, Bazzaz FA (2000) Biotic invasions: causes, epidemiology, global consequences, and control. Ecol Appl 10:689–710

    Article  Google Scholar 

  • Moyle PB, Light T (1996) Fish invasions in California: do abiotic factors determine success? Ecology 77:1666–1670

    Article  Google Scholar 

  • Nehring S (2002) Biological invasions into German waters: an evaluation of the importance of different human-mediated vectors for nonindigenous macrozoobenthic species. In: Leppäkoski E, Gollasch S, Olenin S (eds), Invasive aquatic species of Europe – distribution, impact and management. Dordrecht, Boston, London: Kluwer Academic Publishers, 374–384

    Google Scholar 

  • Nilsson N (1985) The niche concept and the introduction of exotics. Inst Freshwater Res – Drottningholm 62:128–135

    Google Scholar 

  • Olenin S (ed) (1994) Biodiversity and conservation values of the Lithuanian Coastal Zone Hard Bottom Areas (the Baltic Sea). Scientific Report. World Wide Fond for Nature – Lithuanian Fond for Nature Joint Project. Vilnius-Klaipeda-Solna: 59p

  • Olenin S (1997) Marine benthic biotopes and bottom communities of the south-eastern Baltic shallow waters. In: Hawkins LE, Hutchinson S, Jensen AC, Williams JA Sheader M (eds), Proceedings of the 30th European marine biology symposium. University of Southampton, United Kingdom, 243–249

    Google Scholar 

  • Olenin S (2004) Online alien species database: experience of regional cooperation in the Baltic Sea Area. In: Sellers E, Simpson A, Fisher JP, Curd-Hetrick S (eds) Experts meeting on implementation of a Global Invasive Species Information Network (GISIN), Proceedings of a Workshop. 6–8 April, 2004. Baltimore, Maryland, USA, pp 53–57

  • Olenin S, Leppäkoski E, Daunys D (2002). Internet database on alien species in the Baltic Sea. In: Leppäkoski E, Gollasch S, Olenin S (eds) Invasive aquatic species of Europe – distribution, impact and management. Dordrecht, Boston, London. Kluwer Academic Publishers:525–528

    Google Scholar 

  • Paavola M, Olenin S, Leppäkoski E (2005) Are invasive species most successful in habitats of low native species richness across European brackish water seas? Estuarine, Coastal Shelf Sci 64:738–750

    Article  Google Scholar 

  • Razinkovas A (1996) Spatial distribution and migration patterns of the mysids in the Curonian lagoon. In: 25th Anniversary of the Bltic Marine Biologists; Proceedings of the 13th BMB Symposium, pp 117–120

  • Rejmanek M (2000) Invasive plants: approaches and predictions. Austral Ecol 25:497–506

    Article  Google Scholar 

  • Remane A (1934) Die Brackwasserfauna. Verhandlungen der Deutschen Zoologischen Gesellschaft 36:34–74

    Google Scholar 

  • Romanuk TN, Kolasa J (2005) Resource limitation, biodiversity, and competitive effects interact to determine the invasibility of roch pool microcosms. Biol Invasions 7:711–722

    Article  Google Scholar 

  • Ruiz GM, Fofonoff P, Hines AH, Grosholz ED (1999) Nonindigenous species as stressors in estuarine and marine communities: assessing invasion impacts and interactions. Limnol Oceanog 44:950–972

    Article  Google Scholar 

  • Ruiz GM, Hewitt CL (2002) Toward understanding patters of coastal marine invasions: A prospectus. In: Leppaäkoski E, Gollasch S, Olenin S (eds) Invasive aquatic species of Europe – distribution, impact and management. Dordrecht, Boston, London. Kluwer Academic Publishers:529–547

  • Simberloff D, Von Holle B (1999) Positive interactions of nonindigenous species: invasional meltdown? Biol Invasions 1(1):21–32

    Article  Google Scholar 

  • Stachowicz JJ, Whitlatch RB, Osman RW (1999) Species diversity and invasion resistance in a marine ecosystem. Science 286:1577–1579

    Article  PubMed  CAS  Google Scholar 

  • Stohlgren TJ, Barnett DT, Kartesz JT, Krannitz PG, Hermanutz L (2003) The rich get richer: plant invasions in the Unated States and Canada. Front Ecol Environ 1(1):11–14

    Article  Google Scholar 

  • Van der Velde G, Nagelkerken I, Rajagopal S, de Vaate AB (2002) Invasions by alien species in inland freshwater bodies in western Europe: the Rhine delta. In: Leppäkoski E, Gollasch S, Olenin S (Eds), Invasive aquatic species of Europe – distribution, impact and management. Dordrecht, Boston, London, Kluwer Academic Publishers, 360–372

    Google Scholar 

  • Vitousek PM, D’Antonio CM, Loope LL, Rejmanek M, Westbtooks R (1997) Introduced species: a significant component of human-caused global change. N Zeal J Ecol 21(1):1–16

    Google Scholar 

  • With KA (2004) Assessing the risk of invasive spread in fragmented landscapes. Risk Anal 24(4):803–815

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

This study was supported by the EU Framework 6 Integrated Project 506675 ALARM “Assessing Large-scale environmental risks with tested methods” and project CT 2003-511202 DAISIE “Delivering Alien Species Inventory for Europe”.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anastasija Zaiko.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zaiko, A., Olenin, S., Daunys, D. et al. Vulnerability of benthic habitats to the aquatic invasive species . Biol Invasions 9, 703–714 (2007). https://doi.org/10.1007/s10530-006-9070-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10530-006-9070-0

Keywords

Navigation