Skip to main content
Log in

Testing the Australian Weed Risk Assessment with different estimates for invasiveness

  • Original Paper
  • Published:
Biological Invasions Aims and scope Submit manuscript

Abstract

The Weed Risk Assessment (WRA) has become an effective tool in predicting invasiveness of exotic plant species. In studies testing the WRA, exotic plant species are usually divided into major weeds, minor weeds and non-weeds. However, these divisions are qualitative, as the categories are assigned by experts. Many studies searching for plant traits that are indicative of plant invasiveness use quantitative estimates to measure invasiveness. We compared how quantitative and qualitative estimates of invasiveness may relate to WRA scores. As quantitative estimates we used regional frequency (spread), change in regional frequency and local dominance of naturalized exotic plant species in The Netherlands. To obtain a qualitative estimate we determined if the exotic plant species occurred on a black list in neighbouring regions. We related WRA scores of the exotic plant species to these qualitative and quantitative estimates of invasiveness. Our results reveal that the WRA predicted the qualitative (black list) estimate more accurately than the quantitative (dominance and spread) ones. The black list estimate matches with the overall impact of exotic species, which is assumed to incorporate regional spread, local dominance and noxiousness. Therefore, the WRA predicts the noxiousness component, but to a lesser extent the spatial components of impact of exotic species. On the other hand, studies that use regional spread and other quantitative estimates of invasiveness tend not to include the noxiousness component of impact. We propose that our analyses may also help to further solve the recent debate on whether or not performing research on exotic species.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Blackburn TM, Pyšek P, Bacher S, Carlton JT, Duncan RP, Jarošík V, Wilson JRU, Richardson DM (2011) A proposed unified framework for biological invasions. Trends Ecol Evol (Personal edition) 26(7):333–339

    Article  Google Scholar 

  • Branquart E (2011) Alert, black and watch lists of invasive species in Belgium. Harmonia version 1.2, Belgian Forum on Invasive species. http://ias.biodiversity.be. Accessed Nov 2010–Feb 2011

  • Bucharova A, van Kleunen M (2009) Introduction history and species characteristics partly explain naturalization success of North American woody species in Europe. J Ecol 97(2):230–238

    Article  Google Scholar 

  • CAB International (2010) Forestry compendium. http://www.cabi.org/fc/. Accessed Nov 2010–Feb 2011

  • Crosti R, Cascone C, Cipollaro S (2010) Use of a weed risk assessment for the Mediterranean region of Central Italy to prevent loss of functionality and biodiversity in agro-ecosystems. Biol Invasions 12(6):1607–1616

    Article  Google Scholar 

  • Daehler CC, Denslow JS, Ansari S, Kuo HC (2004) A risk-assessment system for screening out invasive pest plants from Hawaii and other Pacific Islands. Conserv Biol 18(2):360–368

    Article  Google Scholar 

  • DAISIE (2011) DAISIE European invasive alien species gateway. http://www.europe-aliens.org. Accessed Nov 2010–Feb 2011

  • Davis MA, Chew MK, Hobbs RJ, Lugo AE, Ewel JJ, Vermeij GJ, Brown JH, Rosenzweig ML, Gardener MR, Carroll SP, Thompson K, Pickett STA, Stromberg JC, Tredici PD, Suding KN, Ehrenfeld JG, Philip Grime J, Mascaro J, Briggs JC (2011) Don’t judge species on their origins. Nature 474(7350):153–154

    Article  PubMed  CAS  Google Scholar 

  • Dawson W, Burslem D, Hulme PE (2009a) Factors explaining alien plant invasion success in a tropical ecosystem differ at each stage of invasion. J Ecol 97(4):657–665

    Article  Google Scholar 

  • Dawson W, Burslem D, Hulme PE (2009b) The suitability of weed risk assessment as a conservation tool to identify invasive plant threats in East African rainforests. Biol Conserv 142(5):1018–1024

    Article  Google Scholar 

  • Delong ER, Delong DM, Clarkepearson DI (1988) Comparing the areas under 2 or more correlated receiver operating characteristic curves—a nonparametric approach. Biometrics 44(3):837–845

    Article  PubMed  CAS  Google Scholar 

  • EPPO (2011) EPPO list of invasive alien plants. http://www.eppo.org/INVASIVE_PLANTS/ias_plants.htm. Accessed Nov 2010–Feb 2011

  • Fawcett T (2006) An introduction to ROC analysis. Pattern Recognit Lett 27(8):861–874

    Article  Google Scholar 

  • Gasso N, Basnou C, Vilà M (2010) Predicting plant invaders in the Mediterranean through a weed risk assessment system. Biol Invasions 12(3):463–476

    Article  Google Scholar 

  • GCW (2011) Global compendium of weeds. www.hear.org/gcw. Accessed Nov 2010–Feb 2011

  • Gordon DR, Gantz CA (2011) Risk assessment for invasiveness differs for aquatic and terrestrial plant species. Biol Invasions 13(8):1829–1842

    Article  Google Scholar 

  • Gordon DR, Onderdonk DA, Fox AM, Stocker RK (2008a) Consistent accuracy of the Australian weed risk assessment system across varied geographies. Divers Distrib 14(2):234–242

    Article  Google Scholar 

  • Gordon DR, Onderdonk DA, Fox AM, Stocker RK, Gantz CA (2008b) Predicting invasive plants in Florida using the Australian weed risk assessment. Invasive Plant Sci Manag 1:178–195

    Article  Google Scholar 

  • Gordon DR, Riddle B, Pheloung P, Ansari S, Buddenhagen C, Chimera C, Daehler CC, Dawson W, Denslow JS, Jaqualine TN, LaRosa A, Nishida T, Onderdonk DA, Panetta FD, Pyšek P, Randall RP, Richardson DM, Virtue JG, Williams PA (2010) Guidance for addressing the Australian weed risk assessment questions. Plant Prot Q 25(2):56–74

    Google Scholar 

  • Hamilton MA, Murray BR, Cadotte MW, Hose GC, Baker AC, Harris CJ, Licari D (2005) Life-history correlates of plant invasiveness at regional and continental scales. Ecol Lett 8(10):1066–1074

    Article  Google Scholar 

  • Hennekens SM, Schaminée JHJ (2001) TURBOVEG, a comprehensive data base management system for vegetation data. J Veg Sci 12(4):589–591

    Article  Google Scholar 

  • Holm S (1979) A simple sequentially rejective multiple test procedure. Scand J Stat 6(2):65–70

    Google Scholar 

  • Hulme PE (2012) Weed risk assessment: a way forward or a waste of time? J Appl Ecol 49(1):10–19

    Article  Google Scholar 

  • Keller RP, Lodge DM, Finnoff DC (2007) Risk assessment for invasive species produces net bioeconomic benefits. Proc Natl Acad Sci USA 104(1):203–207

    Article  PubMed  CAS  Google Scholar 

  • Kloosterman FH, Van der Meijden R (1994) Eindverslag digitalisering van het IVON-archief (historisch floristisch bestand) van het Rijksherbarium te Leiden. TNO, Delft

    Google Scholar 

  • Klotz S, Kühn I, Durka W (2002) BIOLFLOR—Eine Datenbank mit biologisch-ökologischen Merkmalen zur Flora von Deutschland. Bundesamt für Naturschutz, Bonn

    Google Scholar 

  • Křivánek M, Pyšek P (2006) Predicting invasions by woody species in a temperate zone: a test of three risk assessment schemes in the Czech Republic (Central Europe). Divers Distrib 12(3):319–327

    Article  Google Scholar 

  • Küster EC, Kühn I, Bruelheide H, Klotz S (2008) Trait interactions help explain plant invasion success in the German flora. J Ecol 96(5):860–868

    Article  Google Scholar 

  • Lambdon PW, Pyšek P, Basnou C, Hejda M, Arianoutsou M, Essl F, Jarošík V, Pergl J, Winter M, Anastasiu P, Andriopoulos P, Bazos I, Brundu G, Celesti-Grapow L, Chassot P, Delipetrou P, Josefsson M, Kark S, Klotz S, Kokkoris Y, Kühn I, Marchante H, Perglova I, Pino J, Vilà M, Zikos A, Roy D, Hulme PE (2008) Alien flora of Europe: species diversity, temporal trends, geographical patterns and research needs. Preslia 80(2):101–149

    Google Scholar 

  • McClay A, Sissons A, Wilson C, Davis S (2010) Evaluation of the Australian weed risk assessment system for the prediction of plant invasiveness in Canada. Biol Invasions 12(12):4085–4098

    Article  Google Scholar 

  • Murtaugh PA (2009) Performance of several variable-selection methods applied to real ecological data. Ecol Lett 12(10):1061–1068

    Article  PubMed  Google Scholar 

  • Nishida T, Yamashita N, Asai M, Kurokawa S, Enomoto T, Pheloung PC, Groves RH (2009) Developing a pre-entry weed risk assessment system for use in Japan. Biol Invasions 11(6):1319–1333

    Article  Google Scholar 

  • NOBANIS (2011) Factsheets on invasive alien species. http://www.nobanis.org/Factsheets.asp. Accessed Nov 2010–Feb 2011

  • Parker IM, Simberloff D, Lonsdale WM, Goodell K, Wonham M, Kareiva PM, Williamson MH, Von Holle B, Moyle PB, Byers JE, Goldwasser L (1999) Impact: toward a framework for understanding the ecological effects of invaders. Biol Invasions 1(1):3–19

    Article  Google Scholar 

  • Pheloung P, Williams P, Halloy S (1999) A weed risk assessment model for use as a biosecurity tool evaluating plant introductions. J Environ Manage 57:239–251

    Article  Google Scholar 

  • Pimentel D, Zuniga R, Morrison D (2005) Update on the environmental and economic costs associated with alien-invasive species in the United States. Ecol Econ 52(3):273–288

    Article  Google Scholar 

  • Richardson DM, Pyšek P, Rejmánek M, Barbour MG, Panetta FD, West CJ (2000) Naturalization and invasion of alien plants: concepts and definitions. Divers Distrib 6:93–107

    Article  Google Scholar 

  • Robin X, Turck N, Hainard A, Tiberti N, Lisacek F, Sanchez JC, Muller M (2011) pROC: an open-source package for R and S plus to analyze and compare ROC curves. BMC 12

  • Royal Botanic Gardens Kew (2008) Seed information database (SID). Version 7.1. http://data.kew.org/sid/. Accessed Nov 2010–Feb 2011

  • Speek TAA, Lotz LAP, Ozinga WA, Tamis WLM, Schaminée JHJ, van der Putten WH (2011) Factors relating to regional and local success of exotic plant species in their new range. Divers Distrib 17(3):542–551

    Article  Google Scholar 

  • Tamis WLM (2005) Coping with recording bias in floristic surveys. Gorteria Suppl 6:17–52

    Google Scholar 

  • Tamis WLM, van der Meijden R, Runhaar J, Bekker RM, Ozinga WA, Odé B, Hoste I (2004) Standaardlijst van de Nederlandse flora 2003. Gorteria 30(4/5):101–195

    Google Scholar 

  • Tamis WLM, van’t Zelfde M, van der Meijden R, Groen CLG, de Haes HAU (2005) Ecological interpretation of changes in the Dutch flora in the 20th century. Biol Conserv 125(2):211–224

    Article  Google Scholar 

  • Taramarcaz P, Lambelet C, Clot B, Keimer C, Hauser C (2005) Ragweed (Ambrosia) progression and its health risks: will Switzerland resist this invasion? Swiss Med Wkly 135(37–38):538–548

    PubMed  CAS  Google Scholar 

  • Thompson K, Davis MA (2011) Why research on traits of invasive plants tells us very little. Trends Ecol Evol (Personal edition) 26(4):155–156

    Article  Google Scholar 

  • Thompson K, Hodgson JG, Rich TCG (1995) Native and alien invasive plants: more of the same? Ecography 18(4):390–402

    Article  Google Scholar 

  • Van der Meijden R (2005) Heukels’ Flora van Nederland, 23rd edn. Wolters-Noordhoff, Groningen

    Google Scholar 

  • Van der Meijden R, Groen CLG, Vermeulen JJ, Peterbroers T, Van ‘t Zelfde M, Witte JPM (1996) De landelijke floradatabank FLORBASE-1; eindrapport. RHHB/CML/UL-WHH

  • Vilà M, Espinar JL, Hejda M, Hulme PE, Jarošík V, Maron JL, Pergl J, Schaffner U, Sun Y, Pyšek P (2011) Ecological impacts of invasive alien plants: a meta-analysis of their effects on species, communities and ecosystems. Ecol Lett 14(7):702–708

    Article  PubMed  Google Scholar 

  • Youden WJ (1950) Index for rating diagnostic tests. Cancer 3(1):32–35

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We thank W.L.M. Tamis and J.H.J. Schaminée for using the datasets on regional spread and local dominance of the species used in this study. We want to thank H. Duistermaat and two anonymous referees for comments on an earlier draft of this manuscript. The research was funded by the former Dutch Ministry of Agriculture, Nature and Food Quality, FES-programme ‘Versterking Infrastructuur Plantgezondheid’. WvdP was supported by ALW-Vici grant.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to T. A. A. Speek.

Appendices

Appendix 1

See Table 4.

Table 4 Questions in the WRA

Appendix 2

See Table 5.

Table 5 Species in bold are species that were identified as being on a black list in a neighboring region

Rights and permissions

Reprints and permissions

About this article

Cite this article

Speek, T.A.A., Davies, J.A.R., Lotz, L.A.P. et al. Testing the Australian Weed Risk Assessment with different estimates for invasiveness. Biol Invasions 15, 1319–1330 (2013). https://doi.org/10.1007/s10530-012-0368-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10530-012-0368-9

Keywords

Navigation