Skip to main content
Log in

Rapid evolution of hyaluronan synthase to improve hyaluronan production and molecular mass in Bacillus subtilis

  • Original Research Paper
  • Published:
Biotechnology Letters Aims and scope Submit manuscript

Abstract

Objectives

To improve the production and molecular mass of the glycosaminoglycan hyaluronan (HA) in Bacillus subtilis by engineering hyaluronan synthase (HAS) from Streptococcus zooepidemicus.

Results

By mutating regions within HAS intracellular domains, five positive variants exhibiting higher HA production (from 1.22 to 2.24 g l−1) and molecular mass values (from 1.20 to 1.36 × 106 Da) were constructed and characterized. Overexpression of the V5 variant and the genes tuaD and glmU increased HA production and molecular mass to 2.8 g l−1 and 2.4 × 106 Da, respectively.

Conclusions

This study provides a novel strategy for improving HA production and its molecular mass.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Badle SS, Jayaraman G, Ramachandran KB (2014) Ratio of intracellular precursors concentration and their flux influences hyaluronic acid molecular weight in Streptococcus zooepidemicus and recombinant Lactococcus lactis. Bioresour Technol 163:222–227

    Article  CAS  PubMed  Google Scholar 

  • Chen YH, Wang Q (2009) Establishment of CTAB turbidimetric method to determine hyaluronic acid content in fermentation broth. Carbohydr Polym 78:178–181

    Article  CAS  Google Scholar 

  • Chen WY, Marcellin E, Hung J, Nielsen LK (2009) Hyaluronan molecular weight is controlled by UDP-N-acetylglucosamine concentration in Streptococcus zooepidemicus. J Biol Chem 284:18007–18014

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cheng F, Gong Q, Yu H, Stephanopoulos G (2015) High-titer biosynthesis of hyaluronic acid by recombinant Corynebacterium glutamicum. Biotechnol J 11:574–584

    Article  Google Scholar 

  • Gibson DG, Young L, Chuang RY, Venter JC, Hutchison CA, Smith HO (2009) Enzymatic assembly of DNA molecules up to several hundred kilobases. Nat Methods 6:343–345

    Article  CAS  PubMed  Google Scholar 

  • Heldermon C, DeAngelis PL, Weigel PH (2001) Topological organization of the hyaluronan synthase from Streptococcus pyogenes. J Biol Chem 276:2037–2046

    Article  CAS  PubMed  Google Scholar 

  • Jagannath S, Ramachandran KB (2010) Influence of competing metabolic processes on the molecular weight of hyaluronic acid synthesized by Streptococcus zooepidemicus. Biochem Eng J 48:148–158

    Article  CAS  Google Scholar 

  • Jin P, Kang Z, Yuan P, Du G, Chen J (2016a) Production of specific-molecular-weight hyaluronan by metabolically engineered Bacillus subtilis 168. Metab Eng 35:21–30

    Article  CAS  PubMed  Google Scholar 

  • Jin P, Kang Z, Zhang J, Zhang L, Du G, Chen J (2016b) Combinatorial evolution of enzymes and synthetic pathways using one-step PCR. ACS Synth Biol 5:259–268

    Article  CAS  PubMed  Google Scholar 

  • Jin P, Zhang L, Yuan P, Kang Z, Du G, Chen J (2016c) Efficient biosynthesis of polysaccharides chondroitin and heparosan by metabolically engineered Bacillus subtilis. Carbohydr Polym 140:424–432

    Article  CAS  PubMed  Google Scholar 

  • Kumari K, Weigel PH (2005) Identification of a membrane-localized cysteine cluster near the substrate-binding sites of the Streptococcus equisimilis hyaluronan synthase. Glycobiology 15:529–539

    Article  CAS  PubMed  Google Scholar 

  • Kumari K, Baggenstoss BA, Parker AL, Weigel PH (2006) Mutation of two intramembrane polar residues conserved within the hyaluronan synthase family alters hyaluronan product size. J Biol Chem 281:11755–11760

    Article  CAS  PubMed  Google Scholar 

  • Marcellin E, Steen JA, Nielsen LK (2014) Insight into hyaluronic acid molecular weight control. Appl Microbiol Biotechnol 98:6947–6956

    Article  CAS  PubMed  Google Scholar 

  • Prasad SB, Jayaraman G, Ramachandran KB (2010) Hyaluronic acid production is enhanced by the additional co-expression of UDP-glucose pyrophosphorylase in Lactococcus lactis. Appl Microbiol Biotechnol 86:273–283

    Article  CAS  PubMed  Google Scholar 

  • Pummill PE, DeAngelis PL (2003) Alteration of polysaccharide size distribution of a vertebrate hyaluronan synthase by mutation. J Biol Chem 278:19808–19814

    Article  CAS  PubMed  Google Scholar 

  • Weigel PH, DeAngelis PL (2007) Hyaluronan synthases: a decade-plus of novel glycosyltransferases. J Biol Chem 282:36777–36781

    Article  CAS  PubMed  Google Scholar 

  • Widner B, Behr R, Von Dollen S, Tang M, Heu T, Sloma A, Sternberg D, Deangelis PL, Weigel PH, Brown S (2005) Hyaluronic acid production in Bacillus subtilis. Appl Environ Microbiol 71:3747–3752

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yu H, Stephanopoulos G (2008) Metabolic engineering of Escherichia coli for biosynthesis of hyaluronic acid. Metab Eng 10:24–32

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was financially supported by a grant from the Key Technologies R & D Program of Jiangsu Province, China (BE2014607), the Program for Changjiang Scholars and Innovative Research Team in University (No. IRT_15R26) and the 111 Project.

Supporting information

Supplementary Table 1—Plasmids and primers used.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhen Kang.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 12 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, L., Huang, H., Wang, H. et al. Rapid evolution of hyaluronan synthase to improve hyaluronan production and molecular mass in Bacillus subtilis . Biotechnol Lett 38, 2103–2108 (2016). https://doi.org/10.1007/s10529-016-2193-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10529-016-2193-1

Keywords

Navigation