Skip to main content
Log in

Deletion of ldhA and aldH genes in Klebsiella pneumoniae to enhance 1,3-propanediol production

  • Original Research Paper
  • Published:
Biotechnology Letters Aims and scope Submit manuscript

Abstract

Objectives

To improve 1,3-propanediol (1,3-PD) production and reduce byproduct concentration during the fermentation of Klebsiella pneumonia.

Results

Klebsiella. pneumonia 2-1ΔldhA, K. pneumonia 2-1ΔaldH and K. pneumonia 2-1ΔldhaldH mutant strains were obtained through deletion of the ldhA gene encoding lactate dehydrogenase required for lactate synthesis and the aldH gene encoding acetaldehyde dehydrogenase involved in the synthesis of ethanol. After fed-batch fermentation, the production of 1,3-PD from glycerol was enhanced and the concentrations of byproducts were reduced compared with the original strain K. pneumonia 2-1. The maximum yields of 1,3-PD were 85.7, 82.5 and 87.5 g/l in the respective mutant strains.

Conclusion

Deletion of either aldH or ldhA promoted 1,3-PD production in K. pneumonia.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig.1
Fig.2
Fig.3
Fig.4
Fig. 5

Similar content being viewed by others

References

  • Celińska E (2010) Debottlenecking the 1,3-propanediol pathway by metabolic engineering. Biotechnol Adv 28:519–530

    Article  PubMed  Google Scholar 

  • Da Silva GP, Mack M, Contiero J (2009) Glycerol: a promising and abundant carbon source for industrial microbiology. Biotechnol Adv 27:30–39

    Article  PubMed  Google Scholar 

  • Datsenko KA, Wanner BL (2000) One-step in activation of chrom os om algenes in Escherichia coli K-12 using PCR products. Proc Natl Acad Sci USA 97:6640–6645

    Article  CAS  PubMed  Google Scholar 

  • Ji XJ, Huang H, Zhu JG et al (2010) Engineering Klebsiella oxtoca for efficient 2,3-butanediol production through insertional inactivation of acetaldehyde dehydrogenase gene. Appl Microbiol Biotechnol 85:1751–1758

    Article  CAS  PubMed  Google Scholar 

  • Jung MY, Ng CY, Song H et al (2012) Deletion of lactate dehydrogenase in Enterobacter aerogenes to enhance 2,3-butanediol production. Appl Microbiol Biotechnol 95:461–469

    Article  CAS  Google Scholar 

  • Meng DD, Wang RM, Ma CL (2011) Isolation, identification and fermentation characterization of a 1,3-propanediol product bacterial. Microbiol Chin 38:803–808

    CAS  Google Scholar 

  • Mu Y, Teng H, Zhang DJ et al (2006) Microbial production of 1, 3-propanediol by Klebsiella pneumoniae using crude glycerol from biodiesel preparation. Biotechnol Lett 28:1755–1759

    Article  CAS  PubMed  Google Scholar 

  • Oh BR, Seo JW, Heo SY et al (2012) Optimization of culture conditions for 1,3-propanediol production from glycerol using a mutant strain of Klebsiella pneumoniae. Appl Biochem Biotechnol 166:127–137

    Article  CAS  PubMed  Google Scholar 

  • Oh BR, Seo JW, Heo SY et al (2013a) Efficient production of 1,3-propanediol from glycerol upon constitutive expression of the 1,3-propanediol oxidoreductase gene in engineered Klebsiella pneumoniae with elimination of by-product formation. Bioproc Biosyst Eng 36:757–763

    Article  CAS  Google Scholar 

  • Oh BR, Hong WK, Heo SY et al (2013b) The production of 1,3-propanediol from mixtures of glycerol and glucose by a Klebsiella pneumoniae mutant deficient in carbon catabolite repression. Bioresour Technol 130:719–724

    Article  CAS  PubMed  Google Scholar 

  • Saxena RK, Anand P, Saran S et al (2009) Microbial production of 1,3-propanediol: recent developments and emerging opportunities. Biotechnol Adv 27:895–913

    Article  CAS  Google Scholar 

  • Seo MY, Seo JW, Heo SY et al (2009) Elimination of by-product formation during production of 1,3-propanediol in Klebsiella pneumoniae by inactivation of glycerol oxidative pathway. Appl Microbiol Biotechnol 84:527–534

    Article  CAS  Google Scholar 

  • Wang A, Wang Y, Jiang T et al (2010) Production of 2,3-butanediol from corncob molasses, a waste byproduct in xylitol production. Appl Microbiol Biotechnol 87:965–970

    Article  CAS  PubMed  Google Scholar 

  • Xiu ZL, Zeng AP (2008) Present state and perspective of downstream processing of biologically produced 1,3-propanediol and 2,3-butanediol. Appl Microbiol Biotechnol 78:917–926

    Article  CAS  Google Scholar 

  • Zeng AP, Biebl H (2002) Bulk chemicals from biotechnology: the case of 1, 3-propanediol production and the new trends. Adv Biochem Eng Biotechnol 74:239–259

    CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was financially supported by a grant from Shandong Province Independent Innovation and Achievement Transformation Project (201422cx02602) and a grant from Taishan scholar Construction Project.

Supporting Information

Supplementary Table 1—Primers used in this study.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chunling Ma.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 12 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, L., Ma, C., Wang, R. et al. Deletion of ldhA and aldH genes in Klebsiella pneumoniae to enhance 1,3-propanediol production. Biotechnol Lett 38, 1769–1774 (2016). https://doi.org/10.1007/s10529-016-2155-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10529-016-2155-7

Keywords

Navigation