Skip to main content
Log in

One-step integration of multiple genes into the oleaginous yeast Yarrowia lipolytica

  • Original Research Paper
  • Published:
Biotechnology Letters Aims and scope Submit manuscript

Abstract

Yarrowia lipolytica is an unconventional yeast, and is generally recognized as safe (GRAS). It provides a versatile fermentation platform that is used commercially to produce many added-value products. Here we report a multiple fragment assembly method that allows one-step integration of an entire β-carotene biosynthesis pathway (~11 kb, consisting of four genes) via in vivo homologous recombination into the rDNA locus of the Y. lipolytica chromosome. The highest efficiency was 21 %, and the highest production of β-carotene was 2.2 ± 0.3 mg per g dry cell weight. The total procedure was completed in less than one week, as compared to a previously reported sequential gene integration method that required n weeks for n genes. This time-saving method will facilitate synthetic biology, metabolic engineering and functional genomics studies of Y. lipolytica.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  • Bankar A, Kumar A, Zinjarde S (2009) Environmental and industrial applications of Yarrowia lipolytica. Appl Microbiol Biotechnol 84:847–865

    Article  PubMed  CAS  Google Scholar 

  • Beckerich JM, Boisrame-Baudevin A, Gaillardin C (1998) Yarrowia lipolytica: a model organism for protein secretion studies. Intern Microbiol 1:123–130

    CAS  Google Scholar 

  • Beopoulos A, Cescut J, Haddouche R, Uribelarrea J-L, Molina-Jouve C, Nicaud J-M (2009) Yarrowia lipolytica as a model for bio-oil production. Prog Lipid Res 48:375–387

    Article  PubMed  CAS  Google Scholar 

  • Blazeck J, Liu L, Redden H, Alper H (2011) Tuning gene expression in Yarrowia lipolytica by a hybrid promoter approach. Appl Environ Microbiol 77:7905–7914

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Celinska E, Grajek W (2013) A novel multigene expression construct for modification of glycerol metabolism in Yarrowia lipolytica. Microb Cell Factor 12:102

    Article  Google Scholar 

  • Chuang L-T, Chen D-C, Nicaud J-M, Madzak C, Chen Y-H, Huang Y-S (2010) Co-expression of heterologous desaturase genes in Yarrowia lipolytica. New Biotechnol 27:277–282

    Article  CAS  Google Scholar 

  • Contreras G, Barahona S, Rojas M, Baeza M, Cifuentes V, Alcaino J (2013) Increase in the astaxanthin synthase gene (crtS) dose by in vivo DNA fragment assembly in Xanthophyllomyces dendrorhous. BMC Biotechnol 13:84

    Article  PubMed  PubMed Central  Google Scholar 

  • Crolla A, Kennedy KJ (2001) Optimization of citric acid production from Candida lipolytica Y-1095 using n-paraffin. J Biotechnol 89:27–40

    Article  PubMed  CAS  Google Scholar 

  • Gibson DG (2009) Synthesis of DNA fragments in yeast by one-step assembly of overlapping oligonucleotides. Nucleic Acid Res 37:6984–6990

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Heo P et al (2013) Simultaneous integration of multiple genes into the Kluyveromyces marxianus chromosome. J Biotechnol 167:323–325

    Article  PubMed  CAS  Google Scholar 

  • Kretzschmar A, Otto C, Holz M, Werner S, Hübner L, Barth G (2013) Increased homologous integration frequency in Yarrowia lipolytica strains defective in non-homologous end-joining. Curr Genet 59:63–72

    Article  PubMed  CAS  Google Scholar 

  • Matthäus F, Ketelhot M, Gatter M, Barth G (2013) Production of lycopene in the non-carotenoid producing yeast Yarrowia lipolytica. Appl Environ Microbiol. doi:10.1128/aem.03167-13

    PubMed  Google Scholar 

  • Nicaud J-M (2012) Yarrowia lipolytica. Yeast 29:409–418

    Article  PubMed  CAS  Google Scholar 

  • Shao Z, Zhao H, Zhao H (2009) DNA assembler, an in vivo genetic method for rapid construction of biochemical pathways. Nucleic Acid Res 37:e16

    Article  PubMed  PubMed Central  Google Scholar 

  • Velayos A, Blasco JL, Alvarez MI, Iturriaga EA, Eslava AP (2000a) Blue-light regulation of phytoene dehydrogenase (carB) gene expression in Mucor circinelloides. Planta 210:938–946

    Article  PubMed  CAS  Google Scholar 

  • Velayos A, Eslava AP, Iturriaga EA (2000b) A bifunctional enzyme with lycopene cyclase and phytoene synthase activities is encoded by the carRP gene of Mucor circinelloides. Eur J Biochem 267:5509–5519

    Article  PubMed  CAS  Google Scholar 

  • Verbeke J, Beopoulos A, Nicaud J-M (2013) Efficient homologous recombination with short length flanking fragments in Ku70 deficient Yarrowia lipolytica strains. Biotechnol Lett 35:571–576

    Article  PubMed  CAS  Google Scholar 

  • Verwaal R, Wang J, Meijnen J, Visser H, Sandmann G, van den Berg J, van Ooyen A (2007) High-level production of beta-carotene in Saccharomyces cerevisiae by successive transformation with carotenogenic genes from Xanthophyllomyces dendrorhous. Appl Environ Microbiol 73:4342–4350

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Wang Z-P, Xu H-M, Wang G-Y, Chi Z, Chi Z-M (2013) Disruption of the MIG1 gene enhances lipid biosynthesis in the oleaginous yeast Yarrowia lipolytica ACA-DC 50109. Biochim Biophys Acta—Molec Cell Biol Lipids 1831:675–682

    Article  CAS  Google Scholar 

  • Xue Z, Sharpe PL, Hong SP, Yadav NS et al (2013) Production of omega-3 eicosapentaenoic acid by metabolic engineering of Yarrowia lipolytica. Nat Biotech 31:734–740

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by the National Basic Research Program of China (973: 2012CB721105 and 2014CB745101), National High-Tech Research and Development Program of China (863: 2012AA02A704) and the Knowledge Innovation Program of the Chinese Academy of Sciences (Y31M5A211). We thank Prof. Catherine Madzak for offering transformation protocols of Y. lipolytica.

Supporting information

Supplementary Table 1—Strains and plasmids used in this work

Supplementary Table 2—Primers used in this work

Supplementary Table 3—Procedure of elution for HPLC analysis

Supplementary Figure 1—Construction of engineering β-carotene biosynthesis pathway from X. dendrorhous in Y. lipolytica, namely XD

Supplementary Figure 2—A histogram representing the copy number of each cassette in mutant strain CIBTS 1176 by realtime qPCR

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Sheng Yang, Yu Jiang or Daijie Chen.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supporting information

Supplementary Table 1—Strains and plasmids used in this work.

Supplementary Table 2—Primers used in this work.

Supplementary Table 3—Procedure of elution for HPLC analysis.

Supplementary Fig. 1—Construction of engineering β-carotene biosynthesis pathway from X. dendrorhous in Y. lipolytica, namely XD.

Supplementary Fig. 2—A histogram representing the copy number of each cassette in mutant strain CIBTS 1176 by realtime Qpcr.

Supplementary material 1 (DOCX 381 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gao, S., Han, L., Zhu, L. et al. One-step integration of multiple genes into the oleaginous yeast Yarrowia lipolytica . Biotechnol Lett 36, 2523–2528 (2014). https://doi.org/10.1007/s10529-014-1634-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10529-014-1634-y

Keywords

Navigation