Skip to main content

Advertisement

Log in

Dynamic cell culture on porous biopolymer microcarriers in a spinner flask for bone tissue engineering: a feasibility study

  • Original Research Paper
  • Published:
Biotechnology Letters Aims and scope Submit manuscript

Abstract

Porous microspherical carriers have great promise for cell culture and tissue engineering. Dynamic cultures enable more uniform cell population and effective differentiation than static cultures. Here we applied dynamic spinner flask culture for the loading and multiplication of cells onto porous biopolymer microcarriers. The abilities of the microcarriers to populate cells and to induce osteogenic differentiation were examined and the feasibility of in vivo delivery of the constructs was addressed. Over time, the porous microcarriers enabled cell adhesion and expansion under proper dynamic culture conditions. Osteogenic markers were substantially expressed by the dynamic cell cultures. The cell-cultured microcarriers implanted in the mouse subcutaneous tissue for 4 weeks showed excellent tissue compatibility, with minimal inflammatory signs and significant induction of bone tissues. This first report on dynamic culture of porous biopolymer microcarriers providing an effective tool for bone tissue engineering.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Bang S-H, Kim T-H, Lee H-Y, Shin US, Kim H-W (2011) Nanofibrous-structured biopolymer scaffolds obtained by a phase separation with camphene and initial cellular events. J Mater Chem 21:4523–4530

    Article  CAS  Google Scholar 

  • Bilgen B, Barabino GA (2007) Location of scaffolds in bioreactors modulates the hydrodynamic environment experienced by engineered tissues. Biotechnol Bioeng 98:282–294

    Article  CAS  PubMed  Google Scholar 

  • Borghi N, Lowndes M, Maruthamuthu V, Gardel ML, Nelson WJ (2010) Regulation of cell motile behavior by crosstalk between cadherin-and integrin-mediated adhesions. Proc Natl Acad Sci USA 107:13324–13329

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Brown JL, Nair LS, Laurencin CT (2008) Solvent/non-solvent sintering: a novel route to create porous microsphere scaffolds for tissue regeneration. J Biomed Mater Res B 86:396–406

    Article  Google Scholar 

  • Chun KW, Yoo HS, Yoon JJ, Park TG (2004) Biodegradable PLGA microcarriers for injectable delivery of chondrocytes: effect of surface modification on cell attachment and function. Biotechnol Prog 20:1797–1801

    Article  CAS  PubMed  Google Scholar 

  • Crotts G, Park TG (1995) Preparation of porous and nonporous biodegradable polymeric hollow microspheres. J Control Release 35:91–105

    Article  CAS  Google Scholar 

  • Cukierman E, Pankov R, Stevens DR, Yamada KM (2001) Taking cell-matrix adhesions to the third dimension. Science 294:1708–1712

    Article  CAS  PubMed  Google Scholar 

  • Dorj B, Park J-H, Kim H-W (2012) Robocasting chitosan/nanobioactive glass dual-pore structured scaffolds for bone engineering. Mater Lett 73:119–122

    Article  CAS  Google Scholar 

  • Drury JL, Mooney DJ (2003) Hydrogels for tissue engineering: scaffold design variables and applications. Biomaterials 24:4337–4351

    Article  CAS  PubMed  Google Scholar 

  • Ehrlich JS, Hansen MD, Nelson WJ (2002) Spatio-temporal regulation of Rac1 localization and lamellipodia dynamics during epithelial cell–cell adhesion. Dev Cell 3:259–270

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Eibes G, dos Santos F, Andrade PZ, Boura JS, Abecasis M, da Silva CL, Cabral J (2010) Maximizing the ex vivo expansion of human mesenchymal stem cells using a microcarrier-based stirred culture system. J Biotechnol 146:194–197

    Article  CAS  PubMed  Google Scholar 

  • Fang J, Zhang Y, Yan S, Liu Z, He S, Cui L, Yin J (2014) Poly(l-glutamic acid)/chitosan polyelectrolyte complex porous microspheres as cell microcarriers for cartilage regeneration. Acta Biomater 10:276–288

    Article  CAS  PubMed  Google Scholar 

  • Frauenschuh S, Reichmann E, Ibold Y, Goetz PM, Sittinger M, Ringe J (2007) A microcarrier-based cultivation system for expansion of primary mesenchymal stem cells. Biotechnol Prog 23:187–193

    Article  CAS  PubMed  Google Scholar 

  • Frith JE, Thomson B, Genever PG (2009) Dynamic three-dimensional culture methods enhance mesenchymal stem cell properties and increase therapeutic potential. Tissue Eng C 16:735–749

    Article  Google Scholar 

  • Grellier M, Granja PL, Fricain J-C, Bidarra SJ, Renard M, Bareille R, Bourget C, Amédée J, Barbosa MA (2009) The effect of the co-immobilization of human osteoprogenitors and endothelial cells within alginate microspheres on mineralization in a bone defect. Biomaterials 30:3271–3278

    Article  CAS  PubMed  Google Scholar 

  • Hoffman AS (2012) Hydrogels for biomedical applications. Adv Drug Del Rev 64:18–23

    Article  Google Scholar 

  • Hong S-J, Yu H-S, Kim H-W (2009a) Preparation of porous bioactive ceramic microspheres and in vitro osteoblastic culturing for tissue engineering application. Acta Biomater 5:1725–1731

    Article  CAS  PubMed  Google Scholar 

  • Hong SJ, Yu HS, Kim HW (2009b) Tissue engineering polymeric microcarriers with macroporous morphology and bone-bioactive surface. Macromol Biosci 9:639–645

    Article  CAS  PubMed  Google Scholar 

  • Hutmacher DW (2000) Scaffolds in tissue engineering bone and cartilage. Biomaterials 21:2529–2543

    Article  CAS  PubMed  Google Scholar 

  • Jin G-Z, Kim M, Shin US, Kim H-W (2011a) Neurite outgrowth of dorsal root ganglia neurons is enhanced on aligned nanofibrous biopolymer scaffold with carbon nanotube coating. Neurosci Lett 501:10–14

    Article  CAS  PubMed  Google Scholar 

  • Jin GZ, Kim M, Shin US, Kim HW (2011b) Effect of carbon nanotube coating of aligned nanofibrous polymer scaffolds on the neurite outgrowth of PC12 cells. Cell Biol Int 35:741–745

    Article  CAS  PubMed  Google Scholar 

  • Jin G-Z, Kim J-H, Park J-H, Choi S-J, Kim H-W, Wall I (2012) Performance of evacuated calcium phosphate microcarriers loaded with mesenchymal stem cells within a rat calvarium defect. J Mater Sci Mater Med 23:1739–1748

    Article  CAS  PubMed  Google Scholar 

  • Kang S-W, Seo S-W, Choi CY, Kim B-S (2008a) Porous poly(lactic-co-glycolic acid) microsphere as cell culture substrate and cell transplantation vehicle for adipose tissue engineering. Tissue Eng C 14:25–34

    Article  CAS  Google Scholar 

  • Kang SW, Yang HS, Seo SW, Han DK, Kim BS (2008b) Apatite-coated poly(lactic-co-glycolic acid) microspheres as an injectable scaffold for bone tissue engineering. J Biomed Mater Res A 85:747–756

    Article  PubMed  Google Scholar 

  • Kilpadi DV, Lemons JE (1994) Surface energy characterization of unalloyed titanium implants. J Biomed Mater Res 28:1419–1425

    Article  CAS  PubMed  Google Scholar 

  • Kitt KN, Nelson WJ (2011) Rapid suppression of activated Rac1 by cadherins and nectins during de novo cell–cell adhesion. PLoS ONE 6:e17841

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Lee KY, Mooney DJ (2001) Hydrogels for tissue engineering. Chem Rev 101:1869–1880

    Article  CAS  PubMed  Google Scholar 

  • Lee H–H, Hong S-J, Kim C-H, Kim E-C, Jang J-H, Shin H-I, Kim H-W (2008) Preparation of hydroxyapatite spheres with an internal cavity as a scaffold for hard tissue regeneration. J Mater Sci Mater Med 19:3029–3034

    Article  CAS  PubMed  Google Scholar 

  • Lee T-J, Bhang SH, La W-G, Yang HS, Seong JY, Lee H, Im G-I, Lee S-H, Kim B-S (2011) Spinner-flask culture induces redifferentiation of de-differentiated chondrocytes. Biotechnol Lett 33:829–836

    Article  CAS  PubMed  Google Scholar 

  • Macchetta A, Turner IG, Bowen CR (2009) Fabrication of HA/TCP scaffolds with a graded and porous structure using a camphene-based freeze-casting method. Acta Biomater 5:1319–1327

    Article  CAS  PubMed  Google Scholar 

  • Madihally SV, Matthew HW (1999) Porous chitosan scaffolds for tissue engineering. Biomaterials 20:1133–1142

    Article  CAS  PubMed  Google Scholar 

  • Maeno S, Niki Y, Matsumoto H, Morioka H, Yatabe T, Funayama A, Toyama Y, Taguchi T, Tanaka J (2005) The effect of calcium ion concentration on osteoblast viability, proliferation and differentiation in monolayer and 3D culture. Biomaterials 26:4847–4855

    Article  CAS  PubMed  Google Scholar 

  • Oh SK, Chen AK, Mok Y, Chen X, Lim U, Chin A, Choo AB, Reuveny S (2009) Long-term microcarrier suspension cultures of human embryonic stem cells. Stem Cell Res 2:219–230

    Article  CAS  PubMed  Google Scholar 

  • Park J-H, Lee E-J, Knowles JC, Kim H-W (2013a) Preparation of in situ hardening composite microcarriers: calcium phosphate cement combined with alginate for bone regeneration. J Biomater Appl. doi:10.1177/0885328213496486

    Google Scholar 

  • Park J-H, Pérez RA, Jin G-Z, Choi S-J, Kim H-W, Wall IB (2013b) Microcarriers designed for cell culture and tissue engineering of bone. Tissue Eng B 19:172–190

    Article  CAS  Google Scholar 

  • Seo S-J, Choi Y-J, Akaike T, Higuchi A, Cho C-S (2006) Alginate/galactosylated chitosan/heparin scaffold as a new synthetic extracellular matrix for hepatocytes. Tissue Eng 12:33–44

    Article  CAS  PubMed  Google Scholar 

  • Sommar P, Pettersson S, Ness C, Johnson H, Kratz G, Junker JP (2010) Engineering three-dimensional cartilage-and bone-like tissues using human dermal fibroblasts and macroporous gelatine microcarriers. J Plastic Reconst Aesth Surg 63:1036–1046

    Article  Google Scholar 

  • Tamura A, Kobayashi J, Yamato M, Okano T (2012) Temperature-responsive poly(N-isopropylacrylamide)-grafted microcarriers for large-scale non-invasive harvest of anchorage-dependent cells. Biomaterials 33:3803–3812

    Article  CAS  PubMed  Google Scholar 

  • Voigt M, Schauer M, Schaefer D, Andree C, Horch R, Stark G (1999) Cultured epidermal keratinocytes on a microspherical transport system are feasible to reconstitute the epidermis in full-thickness wounds. Tissue Eng 5:563–572

    Article  CAS  PubMed  Google Scholar 

  • Wang Y, Chou B-K, Dowey S, He C, Gerecht S, Cheng L (2013) Scalable expansion of human induced pluripotent stem cells in the defined xeno-free E8 medium under adherent and suspension culture conditions. Stem Cell Res 11:1103–1116

    Article  CAS  PubMed  Google Scholar 

  • Xu F, Wang Z, Yang W (2010) Surface functionalization of polycaprolactone films via surface-initiated atom transfer radical polymerization for covalently coupling cell-adhesive biomolecules. Biomaterials 31:3139–3147

    Article  CAS  PubMed  Google Scholar 

  • Yu HS, Hong SJ, Park JH, Jeong I, Kim HW (2009) Bioactive and degradable composite microparticulates for the tissue cell population and osteogenic development. Adv Eng Mater 11:B162–B168

    Article  Google Scholar 

  • Zhao G, Schwartz Z, Wieland M, Rupp F, Geis-Gerstorfer J, Cochran D, Boyan B (2005) High surface energy enhances cell response to titanium substrate microstructure. J Biomed Mater Res A 74:49–58

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgment

This work was supported by a grant from Dankook University in 2013.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hae-Won Kim.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Jin, GZ., Park, JH., Seo, SJ. et al. Dynamic cell culture on porous biopolymer microcarriers in a spinner flask for bone tissue engineering: a feasibility study. Biotechnol Lett 36, 1539–1548 (2014). https://doi.org/10.1007/s10529-014-1513-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10529-014-1513-6

Keywords

Navigation