Skip to main content
Log in

Inhibitory effects of xenocoumacin 1 on the different stages of Phytophthora capsici and its control effect on Phytophthora blight of pepper

  • Published:
BioControl Aims and scope Submit manuscript

Abstract

Phytophthora species cause enormous economic loss every year worldwide. Xenocoumacin 1 (Xcn1), isolated from the bacterium Xenorhabdus nematophilus, is a broad-spectrum antibiotic against agricultural pathogens, especially Phytophthora. To understand the inhibitory mode of Xcn1 toward Phytophthora pathogens, we determined the inhibitory effects of Xcn1 on Phytophthora capsici both in vitro and in vivo. In vitro, Xcn1 inhibited different stages in the life cycle of P. capsici, including sporangium formation, zoospore germination, and mycelial growth, with 50% effective concentration (EC50) values of 0.037, 0.81, and 2.44 μg ml−1, respectively. Xcn1 also reduced zoospore motility. In vivo, Xcn1 efficiently controlled the Phytophthora blight of pepper with a disease reduction of 99% at a concentration of 5 μg ml−1 assessed on the third day after incubation of wound stem plants. In addition, Xcn1-treated P. capsici mycelia exhibited increased mycelial branch spacing, evident plasmolysis, and leakage of intracellular components. In conclusion, in the presence of Xcn1, several stages in the life cycle of P. capsici were inhibited, and the hyphae exhibited obvious morphological changes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Andrieu N, Jaworska G, Genet JL, Bompeix G (2001) Biological mode of action of famoxadone on Plasmopara viticola and Phytophthora infestans. Crop Prot 20:253–260

    Article  CAS  Google Scholar 

  • Anke T (1995) The antifungal strobilurins and their possible ecological role. Can J Bot 73:940–945

    Article  Google Scholar 

  • Cohen Y, Coffey MD (1986) Systemic fungicides and the control of oomycetes. Annu Rev Phytopathol 24:311–338

    Article  CAS  Google Scholar 

  • Cray JA, Bell AN, Bhaganna P, Mswaka AY, Timson DJ, Hallsworth JE (2013) The biology of habitat dominance; can microbes behave as weeds? Microb Biotechnol 6:453–492

    Article  PubMed  PubMed Central  Google Scholar 

  • Cray JA, Stevenson A, Ball P, Bankar SB, Eleutherio EC, Ezeji TC, Singhal RS, Thevelein JM, Timson DJ, Hallsworth JE (2015) Chaotropicity: a key factor in product tolerance of biofuel-producing microorganisms. Curr Opin Biotechnol 33:228–259

    Article  CAS  PubMed  Google Scholar 

  • Davidse LC, Hofman AE, Velthuis GCM (1983) Specific interference of metalaxyl with endogenous RNA polymerase activity in isolated nuclei from Phytophthora megasperma f. sp. medicaginis. Exp Mycol 7:344–361

    Article  CAS  Google Scholar 

  • De Lima Alves F, Stevenson A, Baxter E, Gillion JL, Hejazi F, Hayes S, Morrison IE, Prior BA, McGenity TJ, Rangel DE, Magan N, Timmis KN, Hallsworth JE (2015) Concomitant osmotic and chaotropicity-induced stresses in Aspergillus wentii: compatible solutes determine the biotic window. Curr Genet 61:457–477

    Article  PubMed  Google Scholar 

  • Deising HB, Reimann S, Peil A, Weber WE (2002) Disease management of rusts and powdery mildews. In: Kempken F (ed) The mycota XI. Application in Agriculture. Springer, Berlin, pp 243–269

    Chapter  Google Scholar 

  • Duniway JM (1983) Role of physical factors in the development of Phytophthora diseases. In: Erwin DC, Bartnicki-Garcia S, Tsao PH (eds) Phytophthora: its biology, taxonomy, ecology, and pathology. APS, St Paul, MN, pp 175–187

    Google Scholar 

  • Dynesen J, Nielsen J (2003) Branching is coordinated with mitosis in growing hyphae of Aspergillus nidulans. Fung Genet Biol 40:15–24

    Article  CAS  Google Scholar 

  • Erwin DC, Ribeiro OK (1996) Phytophthora diseases worldwide. APS, St Paul, MN

    Google Scholar 

  • Fiddy C, Trinci AP (1976) Mitosis, septation, branching, and the duplication cycle in Aspergillus nidulans. J Genet Microbiol 97:169–184

    Article  CAS  Google Scholar 

  • Gregory PH (1983) Some major epidemics caused by Phytophthora. In: Erwin DC, Bartnicki-Garcia S, Tsao PH (eds) Phytophthora: its biology, taxonomy, ecology, and pathology. St Paul, MN, APS, pp 271–278

    Google Scholar 

  • Hallsworth JE, Heim S, Timmis KN (2003) Chaotropic solutes cause water stress in Pseudomonas putida. Environ Microbiol 5:1270–1280

    Article  CAS  PubMed  Google Scholar 

  • Hausbeck MK, Lamour KH (2004) Phytophthora capsici on vegetable crops: research progress and management challenges. Plant Dis 88:1292–1303

    Article  Google Scholar 

  • Hickman C (1970) Biology of Phytophthora zoospores. Phytopathology 60:1128–1135

    Article  Google Scholar 

  • Huang W, Zhu C, Yang X, Yang H, Xu H, Xie Y, Jian H (2005) Isolation and structural indentification of main component CB6-1 produced by Xenorhabdus nematophila var. pekingensis. Chin J Antibiot 30:513–515

    CAS  Google Scholar 

  • Huang W, Yang X, Yang H, Liu Z, Yuan J (2006) Identification and activity of antibacterial substance from Xenorhabdus nematophila var. Pekingense. Nat Prod Res Dev 18:25–28

    CAS  Google Scholar 

  • Judelson HS, Blanco FA (2005) The spores of Phytophthora: weapons of the plant destroyer. Nat Rev Microbiol 3:47–58

    Article  CAS  PubMed  Google Scholar 

  • Kuhn PJ, Pitt D, Lee SA, Wakley G, Sheppard AN (1991) Effects of dimethomorph on the morphology and ultrastructure of Phytophthora. Mycol Res 95:333–340

    Article  CAS  Google Scholar 

  • Lozowicka B, Hrynko I, Kaczynski P, Jankowska M, Rutkowska E (2016) Long-term investigation and health risk assessment of multi-class fungicide residues in fruits. Pol J Environ Stud 25:681–697

    Article  CAS  Google Scholar 

  • Matheron ME, Porchas M (2000) Impact of azoxystrobin, dimethomorph, fluazinam, fosetyl-Al, and metalaxyl on growth, sporulation, and zoospore cyst germination of three Phytophthora spp. Plant Dis 84:454–458

    Article  CAS  Google Scholar 

  • McInerney BV, Taylor WC, Lacey MJ, Akhurst RJ, Gregson RP (1991) Biologically active metabolites from Xenorhabdus spp, Part 2. Benzpyran-1-one derivatives with gastroprotective activity. J Nat Prod 54:785–795

    Article  CAS  PubMed  Google Scholar 

  • Muri SD, van der Voet H, Boon PE, van Klaveren JD, Bruschweiler BJ (2009) Comparison of human health risks resulting from exposure to fungicides and mycotoxins via food. Food Chem Toxicol 47:2963–2974

    Article  CAS  PubMed  Google Scholar 

  • Park H (2003) Isolation and anti-oomycete activity of nyasol from Anemarrhena asphodeloides rhizomes. Phytochemistry 64:997–1001

    Article  CAS  PubMed  Google Scholar 

  • Ristaino JB, Johnston SA (1999) Ecologically based approaches to management of Phytophthora blight on bell pepper. Plant Dis 83:1080–1089

    Article  Google Scholar 

  • Schlub RL (1983) Epidemiology of Phytophthora capsici on bell pepper. J Agric Sci Camb 100:7–11

    Article  Google Scholar 

  • Schwinn F, Staub T (1995) Oomycetes fungicides. In: Lyr H (ed) Modern selective fungicides: properties, applications, mechanisms of action. Gustav Fischer Verlag, New York, pp 323–346

    Google Scholar 

  • van der Auwera G, De Baere R, van de Peer Y, De Rijk P, van den Broeck I, De Wachter R (1995) The phylogeny of the Hyphochytriomycota as deduced from ribosomal RNA sequences of Hyphochytrium catenoides. Mol Biol Evol 12:671–678

    PubMed  Google Scholar 

  • Walker GM (2011) Pichia anomala: cell physiology and biotechnology relative to other yeasts. Antonie van Leeuwenhoek 99:25–34

    Article  CAS  PubMed  Google Scholar 

  • Yan XJ, Qin WC, Sun LP, Qi SH, Yang DB, Qin ZH, Yuan HZ (2010) Study of inhibitory effects and action mechanism of the novel fungicide pyrimorph against Phytophthora capsici. J Agric Food Chem 58:2720–2725

    Article  CAS  PubMed  Google Scholar 

  • Yang XF, Yang HW, Jian H, Luan XQ (1998) The antibiosis of Xenorhabdus spp. against Phytophthora boehmeriae. Chin J Biol Control 14:21–24

    Google Scholar 

  • Yang HW, Zhang ZM, Yang XF, Jian H (2000) Antibiosis of metabolite of Xenorhabdus nematophilus against Phytophthora infestans. Chin J Biol Control 16:111–113

    Google Scholar 

  • Yang XF, Yang HW, Jian H (2002) Antibiotic activity of metabolites from Xenorhabdus nematophilus against Phytophthora sojae. Soybean Sci 21:52–55

    Google Scholar 

  • Yang XF, Qiu DW, Yang HW, Liu Z, Zeng HM, Yuan JJ (2011) Antifungal activity of xenocoumacin 1 from Xenorhabdus nematophilus var. pekingensis against Phytophthora infestans. World J Microbiol Biotechnol 27:523–528

    Article  CAS  Google Scholar 

  • Zheng YL, Zhu LM, Yao ST (2006) Study on the yield loss induced by Phytophthora capsici Leonian and its controlling index. Acta Agric Zhejiangensis 18:179–182

    Google Scholar 

  • Zhou TT, Zeng HM, Qiu DW, Yang XF, Wang BN, Chen MJ, Guo LH, Wang SC (2011) Global transcriptional responses of Bacillus subtilis to xenocoumacin 1. J Appl Microbiol 111:652–662

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank Ms. Hongjing Hao (Institute of Agro-food Science and Technology, Chinese Academy of Agricultural Sciences, China) for technical assistance in transmission electron microscopy. This work was supported by the Special Fund for Agro-Scientific Research in the Public Interest (No. 200903052).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hongmei Zeng.

Additional information

Handling Editor: Jesus Mercado Blanco

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhou, T., Yang, X., Qiu, D. et al. Inhibitory effects of xenocoumacin 1 on the different stages of Phytophthora capsici and its control effect on Phytophthora blight of pepper. BioControl 62, 151–160 (2017). https://doi.org/10.1007/s10526-016-9779-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10526-016-9779-3

Keywords

Navigation