Skip to main content
Log in

Age-dependent differential expression of death-associated protein 6 (Daxx) in various peripheral tissues and different brain regions of C57BL/6 male mice

  • Research Article
  • Published:
Biogerontology Aims and scope Submit manuscript

Abstract

Death-associated protein 6 (DAXX) is a ubiquitous protein implicated in various cellular processes such as apoptosis, tumorigenesis, development and transcription. The role of DAXX is however ambiguous and many contradictory results regarding its function in apoptosis upon various cellular stresses are described in the literature. In order to have a better understanding of the role of DAXX throughout the entire organism under physiological stress conditions, we have characterized the mRNA levels, protein expression and the proteolytic processing of DAXX in the normal aging process in peripheral organs and brain regions in C57BL/6 male mice. Overall, Daxx mRNA expression decreases with aging in the liver, kidney, heart, cortex and cerebellum. In contrast, an increase is observed in the striatum. The protein expression of DAXX and of its proteolytic fragments increases with aging in the kidney, heart and cortex. In liver and spleen, no changes are observed while in the striatum and cerebellum, certain forms increase and others decrease with age, suggesting that the functions of DAXX may be cell type dependent. This study provides important details regarding the expression and post-translational modifications of DAXX in aging in the entire organism and provides reference data for the deregulation observed in age-associated diseases.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Albrecht S, Bourdeau M, Bennett D, Mufson EJ, Bhattacharjee M, LeBlanc AC (2007) Activation of caspase-6 in aging and mild cognitive impairment. Am J Pathol 170:1200–1209

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Andersen BB, Gundersen HJ, Pakkenberg B (2003) Aging of the human cerebellum: a stereological study. J Comp Neurol 466:356–365

    Article  PubMed  Google Scholar 

  • Baraibar MA, Friguet B (2012) Changes of the proteasomal system during the aging process. Prog Mol Biol Transl Sci 109:249–275

    Article  CAS  PubMed  Google Scholar 

  • Beckman KB, Ames BN (1998) The free radical theory of aging matures. Physiol Rev 78:547–581

    CAS  PubMed  Google Scholar 

  • Bennett IJ, Madden DJ (2014) Disconnected aging: cerebral white matter integrity and age-related differences in cognition. Neuroscience 276:187–205

    Article  CAS  PubMed  Google Scholar 

  • Bernard JA, Seidler RD (2014) Moving forward: age effects on the cerebellum underlie cognitive and motor declines. Neurosci Biobehav Rev 42:193–207

    Article  PubMed  Google Scholar 

  • Bodai L, Pardi N, Ujfaludi Z, Bereczki O, Komonyi O, Balint E, Boros IM (2007) Daxx-like protein of Drosophila interacts with Dmp53 and affects longevity and Ark mRNA level. J Biol Chem 282:36386–36393

    Article  CAS  PubMed  Google Scholar 

  • Chan YW, Chen Y, Poon RY (2009) Generation of an indestructible cyclin B1 by caspase-6-dependent cleavage during mitotic catastrophe. Oncogene 28:170–183

    Article  CAS  PubMed  Google Scholar 

  • Corpet A, Olbrich T, Gwerder M, Fink D, Stucki M (2014) Dynamics of histone H3.3 deposition in proliferating and senescent cells reveals a DAXX-dependent targeting to PML-NBs important for pericentromeric heterochromatin organization. Cell Cycle 13:249–267

    Article  CAS  PubMed  Google Scholar 

  • Davis LL (2014) Cardiovascular issues in older adults. Crit Care Nurs Clin North Am 26:61–89

    Article  PubMed  Google Scholar 

  • Drane P, Ouararhni K, Depaux A, Shuaib M, Hamiche A (2010) The death-associated protein DAXX is a novel histone chaperone involved in the replication-independent deposition of H3.3. Genes Dev 24:1253–1265

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ecsedy JA, Michaelson JS, Leder P (2003) Homeodomain-interacting protein kinase 1 modulates Daxx localization, phosphorylation, and transcriptional activity. Mol Cell Biol 23:950–960

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fukuyo Y, Kitamura T, Inoue M, Horikoshi NT, Higashikubo R, Hunt CR, Usheva A, Horikoshi N (2009) Phosphorylation-dependent Lys63-linked polyubiquitination of Daxx is essential for sustained TNF-α-induced ASK1 activation. Cancer Res 69:7512–7517

    Article  CAS  PubMed  Google Scholar 

  • Gangula PR, Dong YL, Al-Hendy A, Richard-Davis G, Montgomery-Rice V, Haddad G, Millis R, Nicholas SB, Moseberry D (2013) Protective cardiovascular and renal actions of vitamin D and estrogen. Front Biosci (Schol Ed) 5:134–148

    Article  Google Scholar 

  • Giovinazzi S, Lindsay CR, Morozov VM, Escobar-Cabrera E, Summers MK, Han HS, McIntosh LP, Ishov AM (2012) Regulation of mitosis and taxane response by Daxx and Rassf1. Oncogene 31:13–26

    Article  CAS  PubMed  Google Scholar 

  • Gostissa M, Hofmann TG, Will H, Del Sal G (2003) Regulation of p53 functions: let’s meet at the nuclear bodies. Curr Opin Cell Biol 15:351–357

    Article  CAS  PubMed  Google Scholar 

  • Graham RK et al (2006) Cleavage at the caspase-6 site is required for neuronal dysfunction and degeneration due to mutant huntingtin. Cell 125:1179–1191

    Article  CAS  PubMed  Google Scholar 

  • Graham RK et al (2010) Cleavage at the 586 amino acid caspase-6 site in mutant huntingtin influences caspase-6 activation in vivo. J Neurosci 30:15019–15029

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Graham RK, Ehrnhoefer DE, Hayden MR (2011) Caspase-6 and neurodegeneration. Trends Neurosci 34:646–656

    Article  CAS  PubMed  Google Scholar 

  • Graham RK, Riechers S, Butland S, Deng Y, Skotte N, Russ J, Arunachalam V, Wanker E, Hayden MR (2012) Characterization of the caspase-6 interactome identifies novel substrates that play a role in the pathogenesis of HD. Society for Neuroscience Conference

  • Hofmann TG, Stollberg N, Schmitz ML, Will H (2003) HIPK2 regulates transforming growth factor-beta-induced c-Jun NH(2)-terminal kinase activation and apoptosis in human hepatoma cells. Cancer Res 63:8271–8277

    CAS  PubMed  Google Scholar 

  • Hollenbach AD, Sublett JE, McPherson CJ, Grosveld G (1999) The Pax3-FKHR oncoprotein is unresponsive to the Pax3-associated repressor hDaxx. EMBO J 18:3702–3711

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hollenbach AD, McPherson CJ, Mientjes EJ, Iyengar R, Grosveld G (2002) Daxx and histone deacetylase II associate with chromatin through an interaction with core histones and the chromatin-associated protein Dek. J Cell Sci 115:3319–3330

    CAS  PubMed  Google Scholar 

  • Itzhaki O, Skutelsky E, Kaptzan T, Sinai J, Michowitz M, Huszar M, Leibovici J (2003) Ageing-apoptosis relation in murine spleen. Mech Ageing Dev 124:999–1012

    Article  CAS  PubMed  Google Scholar 

  • Jang MS, Ryu SW, Kim E (2002) Modification of Daxx by small ubiquitin-related modifier-1. Biochem Biophys Res Commun 295:495–500

    Article  CAS  PubMed  Google Scholar 

  • Jiang CH, Tsien JZ, Schultz PG, Hu Y (2001) The effects of aging on gene expression in the hypothalamus and cortex of mice. Proc Natl Acad Sci USA 98:1930–1934

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kim KS, Hwang HA, Chae SK, Ha H, Kwon KS (2005) Upregulation of Daxx mediates apoptosis in response to oxidative stress. J Cell Biochem 96:330–338

    Article  CAS  PubMed  Google Scholar 

  • Kwan PS, Lau CC, Chiu YT, Man C, Liu J, Tang KD, Wong YC, Ling MT (2013) Daxx regulates mitotic progression and prostate cancer predisposition. Carcinogenesis 34:750–759

    Article  CAS  PubMed  Google Scholar 

  • Lalioti VS, Vergarajauregui S, Pulido D, Sandoval IV (2002) The insulin-sensitive glucose transporter, GLUT4, interacts physically with Daxx. Two proteins with capacity to bind Ubc9 and conjugated to SUMO1. J Biol Chem 277:19783–19791

    Article  CAS  PubMed  Google Scholar 

  • Lalioti VS, Vergarajauregui S, Tsuchiya Y, Hernandez-Tiedra S, Sandoval IV (2009) Daxx functions as a scaffold of a protein assembly constituted by GLUT4, JNK1 and KIF5B. J Cell Physiol 218:416–426

    Article  CAS  PubMed  Google Scholar 

  • Lessard-Beaudoin M, Laroche M, Demers MJ, Grenier G, Graham RK (2015) Characterization of age-associated changes in peripheral organ and brain region weights in C57BL/6 mice. Exp Gerontol 63:27–34

    Article  PubMed  Google Scholar 

  • Levkau B, Scatena M, Giachelli CM, Ross R, Raines EW (1999) Apoptosis overrides survival signals through a caspase-mediated dominant-negative NF-kappa B loop. Nat Cell Biol 1:227–233

    Article  CAS  PubMed  Google Scholar 

  • Lim JH et al (2012) Age-associated molecular changes in the kidney in aged mice. Oxid Med Cell Longev 2012:171383

    Article  PubMed  PubMed Central  Google Scholar 

  • Lindsay CR, Giovinazzi S, Ishov AM (2009) Daxx is a predominately nuclear protein that does not translocate to the cytoplasm in response to cell stress. Cell Cycle 8:1544–1551

    Article  CAS  PubMed  Google Scholar 

  • Lukiw WJ (2004) Gene expression profiling in fetal, aged, and Alzheimer hippocampus: a continuum of stress-related signaling. Neurochem Res 29:1287–1297

    Article  CAS  PubMed  Google Scholar 

  • Mazars A, Fernandez-Vidal A, Mondesert O, Lorenzo C, Prevost G, Ducommun B, Payrastre B, Racaud-Sultan C, Manenti S (2009) A caspase-dependent cleavage of CDC25A generates an active fragment activating cyclin-dependent kinase 2 during apoptosis. Cell Death Differ 16:208–218

    Article  CAS  PubMed  Google Scholar 

  • Michaelson JS, Leder P (2003) RNAi reveals anti-apoptotic and transcriptionally repressive activities of DAXX. J Cell Sci 116:345–352

    Article  CAS  PubMed  Google Scholar 

  • Michaelson JS, Bader D, Kuo F, Kozak C, Leder P (1999) Loss of Daxx, a promiscuously interacting protein, results in extensive apoptosis in early mouse development. Genes Dev 13:1918–1923

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Niu YL, Li C, Zhang GY (2011) Blocking Daxx trafficking attenuates neuronal cell death following ischemia/reperfusion in rat hippocampus CA1 region. Arch Biochem Biophys 515:89–98

    Article  CAS  PubMed  Google Scholar 

  • Pan WW, Yi FP, Cao LX, Liu XM, Shen ZF, Bu YQ, Xu Y, Fan HY, Song FZ (2013) DAXX silencing suppresses mouse ovarian surface epithelial cell growth by inducing senescence and DNA damage. Gene 526:287–294

    Article  CAS  PubMed  Google Scholar 

  • Papa S, Skulachev VP (1997) Reactive oxygen species, mitochondria, apoptosis and aging. Mol Cell Biochem 174:305–319

    Article  CAS  PubMed  Google Scholar 

  • Perlman R, Schiemann WP, Brooks MW, Lodish HF, Weinberg RA (2001) TGF-beta-induced apoptosis is mediated by the adapter protein Daxx that facilitates JNK activation. Nat Cell Biol 3:708–714

    Article  CAS  PubMed  Google Scholar 

  • Pineiro D, Ramajo J, Bradrick SS, Martinez-Salas E (2012) Gemin5 proteolysis reveals a novel motif to identify L protease targets. Nucleic Acids Res 40:4942–4953

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Riechers SP, Butland S, Deng Y, Skotte N, Ehrnhoefer DE, Russ J, Laine J, Laroche M, Pouladi MA, Wanker E, Hayden MR, Graham RK (2016) Interactome network analysis identifies multiple caspase-6 interactors involved in the pathogenesis of HD. Hum Mol Genet 25(8):1600–1618

    Article  CAS  PubMed  Google Scholar 

  • Rohn TT (2010) The role of caspases in Alzheimer’s disease; potential novel therapeutic opportunities. Apoptosis 15:1403–1409

    Article  CAS  PubMed  Google Scholar 

  • Roth KA (2001) Caspases, apoptosis, and Alzheimer disease: causation, correlation, and confusion. J Neuropathol Exp Neurol 60:829–838

    Article  CAS  PubMed  Google Scholar 

  • Roubille F et al (2007) Myocardial expression of a dominant-negative form of Daxx decreases infarct size and attenuates apoptosis in an in vivo mouse model of ischemia/reperfusion injury. Circulation 116:2709–2717

    Article  PubMed  Google Scholar 

  • Ruiz-Torres P, Lucio J, Gonzalez-Rubio M, Rodriguez-Puyol M, Rodriguez-Puyol D (1997) Oxidant/antioxidant balance in isolated glomeruli and cultured mesangial cells. Free Radic Biol Med 22:49–56

    Article  CAS  PubMed  Google Scholar 

  • Saeed U, Karunakaran S, Meka DP, Koumar RC, Ramakrishnan S, Joshi SD, Nidadavolu P, Ravindranath V (2009) Redox activated MAP kinase death signaling cascade initiated by ASK1 is not activated in female mice following MPTP: novel mechanism of neuroprotection. Neurotox Res 16:116–126

    Article  CAS  PubMed  Google Scholar 

  • Salomoni P, Khelifi AF (2006) Daxx: death or survival protein? Trends Cell Biol 16:97–104

    Article  CAS  PubMed  Google Scholar 

  • Salomoni P, Guernah I, Pandolfi PP (2006) The PML-nuclear body associated protein Daxx regulates the cellular response to CD40. Cell Death Differ 13:672–675

    Article  CAS  PubMed  Google Scholar 

  • Scott FL, Fuchs GJ, Boyd SE, Denault JB, Hawkins CJ, Dequiedt F, Salvesen GS (2008) Caspase-8 cleaves histone deacetylase 7 and abolishes its transcription repressor function. J Biol Chem 283:19499–19510

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shalini S, Dorstyn L, Dawar S, Kumar S (2015) Old, new and emerging functions of caspases. Cell Death Differ 22:526–539

    Article  CAS  PubMed  Google Scholar 

  • Sheydina A, Riordon DR, Boheler KR (2011) Molecular mechanisms of cardiomyocyte aging. Clin Sci 121:315–329

    Article  CAS  PubMed  Google Scholar 

  • Song JJ, Lee YJ (2003) Role of the ASK1-SEK1-JNK1-HIPK1 signal in Daxx trafficking and ASK1 oligomerization. J Biol Chem 278:47245–47252

    Article  CAS  PubMed  Google Scholar 

  • Song JJ, Lee YJ (2004) Daxx deletion mutant (amino acids 501–625)-induced apoptosis occurs through the JNK/p38-Bax-dependent mitochondrial pathway. J Cell Biochem 92:1257–1270

    Article  CAS  PubMed  Google Scholar 

  • Song J, Park KA, Lee WT, Lee JE (2014) Apoptosis signal regulating kinase 1 (ASK1): potential as a therapeutic target for Alzheimer’s disease. Int J Mol Sci 15:2119–2129

    Article  PubMed  PubMed Central  Google Scholar 

  • Su B, Yang YB, Tuo QH, Zhu BY, Lei XY, Yin W, Liao DF (2007) Anti-apoptotic effects of probucol are associated with downregulation of Daxx expression in THP-1 macrophage. Cardiovasc Drugs Ther 21:37–45

    Article  CAS  PubMed  Google Scholar 

  • Suh Y (2002) Cell signaling in aging and apoptosis. Mech Ageing Dev 123:881–890

    Article  CAS  PubMed  Google Scholar 

  • Tang J, Qu LK, Zhang J, Wang W, Michaelson JS, Degenhardt YY, El-Deiry WS, Yang X (2006) Critical role for Daxx in regulating Mdm2. Nat Cell Biol 8:855–862

    Article  CAS  PubMed  Google Scholar 

  • Tang J, Agrawal T, Cheng Q, Qu L, Brewer MD, Chen J, Yang X (2013) Phosphorylation of Daxx by ATM contributes to DNA damage-induced p53 activation. PLoS One 8:e55813

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Torii S, Egan DA, Evans RA, Reed JC (1999) Human Daxx regulates Fas-induced apoptosis from nuclear PML oncogenic domains (PODs). EMBO J 18:6037–6049

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ureshino RP, Bertoncini CR, Fernandes MJ, Abdalla FM, Porto CS, Hsu YT, Lopes GS, Smaili SS (2010) Alterations in calcium signaling and a decrease in Bcl-2 expression: possible correlation with apoptosis in aged striatum. J Neurosci Res 88:438–447

    Article  CAS  PubMed  Google Scholar 

  • Wren BG (1992) The effect of oestrogen on the female cardiovascular system. Med J Aust 157:204–208

    CAS  PubMed  Google Scholar 

  • Wu S, Loke HN, Rehemtulla A (2002) Ultraviolet radiation-induced apoptosis is mediated by Daxx. Neoplasia 4:486–492

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Xu J, Kobayashi S, Yamaguchi S, Iijima K, Okada K, Yamashita K (2000) Gender effects on age-related changes in brain structure. Am J Neuroradiol 21:112–118

    CAS  PubMed  Google Scholar 

  • Yang X, Khosravi-Far R, Chang HY, Baltimore D (1997) Daxx, a novel Fas-binding protein that activates JNK and apoptosis. Cell 89:1067–1076

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang Y, Chong E, Herman B (2002) Age-associated increases in the activity of multiple caspases in Fisher 344 rat organs. Exp Gerontol 37:777–789

    Article  CAS  PubMed  Google Scholar 

  • Zhang C, Zhu Q, Hua T (2010) Aging of cerebellar Purkinje cells. Cell Tissue Res 341:341–347

    Article  PubMed  Google Scholar 

  • Zhao LY, Liu J, Sidhu GS, Niu Y, Liu Y, Wang R, Liao D (2004) Negative regulation of p53 functions by Daxx and the involvement of MDM2. J Biol Chem 279:50566–50579

    Article  CAS  PubMed  Google Scholar 

  • Zhong S, Salomoni P, Ronchetti S, Guo A, Ruggero D, Pandolfi PP (2000) Promyelocytic leukemia protein (PML) and Daxx participate in a novel nuclear pathway for apoptosis. J Exp Med 191:631–640

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zobalova R, Swettenham E, Chladova J, Dong LF, Neuzil J (2008) Daxx inhibits stress-induced apoptosis in cardiac myocytes. Redox Rep 13:263–270

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This research was undertaken, in part, by the Canada Research Chairs Program. RKG holds the Canada Research Chair in Neurodegenerative diseases. MLB held/holds scholarships from the Research Centre on Aging, the Faculty of Medicine and Health Sciences of the University of Sherbrooke, the Canadian Institute for Health Research (CIHR) and Fonds de Recherche du Québec–Santé (FRQ-S). This work was supported in part by a grant from the Canadian Institute for Health Research (CIHR; to GG) and an investigator award from the Fonds de Recherche du Québec–Santé (FRQS; to GG and JBD).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rona K. Graham.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 293 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lessard-Beaudoin, M., Laroche, M., Demers, MJ. et al. Age-dependent differential expression of death-associated protein 6 (Daxx) in various peripheral tissues and different brain regions of C57BL/6 male mice. Biogerontology 17, 817–828 (2016). https://doi.org/10.1007/s10522-016-9651-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10522-016-9651-y

Keywords

Navigation