Skip to main content

Advertisement

Log in

Effects of aging and methionine restriction applied at old age on ROS generation and oxidative damage in rat liver mitochondria

  • Research Article
  • Published:
Biogerontology Aims and scope Submit manuscript

Abstract

It is known that a global decrease in food ingestion (dietary restriction, DR) lowers mitochondrial ROS generation (mitROS) and oxidative stress in young immature rats. This seems to be caused by the decreased methionine ingestion of DR animals. This is interesting since isocaloric methionine restriction in the diet (MetR) also increases, like DR, rodent maximum longevity. However, it is not known if old rats maintain the capacity to lower mitROS generation and oxidative stress in response to MetR similarly to young immature animals, and whether MetR implemented at old age can reverse aging-related variations in oxidative stress. In this investigation the effects of aging and 7 weeks of MetR were investigated in liver mitochondria of Wistar rats. MetR implemented at old age decreased mitROS generation, percent free radical leak at the respiratory chain and mtDNA oxidative damage without changing oxygen consumption. Protein oxidation, lipoxidation and glycoxidation increased with age, and MetR in old rats partially or totally reversed these age-related increases. Aging increased the amount of SIRT1, and MetR decreased SIRT1 and TFAM and increased complex IV. No changes were observed in the protein amounts of PGC1, Nrf2, MnSOD, AIF, complexes I, II and III, and in the extent of genomic DNA methylation. In conclusion, treating old rats with isocaloric short-term MetR lowers mitROS production and free radical leak and oxidative damage to mtDNA, and reverses aging-related increases in protein modification. Aged rats maintain the capacity to lower mitochondrial ROS generation and oxidative stress in response to a short-term exposure to restriction of a single dietary substance: methionine.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Abbreviations

AASA:

Aminoadipic semialdehyde

CEL:

Carboxyethyl-lysine

CML:

Carboxymethyl-lysine

DR:

Dietary restriction

FRL:

Percent free radical leak at the respiratory chain

GSA:

Glutamic semialdehyde

MetR:

Methionine restriction

mitROS:

Mitochondrial ROS

mtDNA:

Mitochondrial DNA

Nrf2:

Nuclear factor erythroid 2-related factor 2

8-oxodG:

8-Oxo-7,8-dihydro-2′deoxyguanosine

PGC1:

Peroxisome proliferator-activated receptor γ coactivator 1

ROS:

Reactive oxygen species

SIRT1:

Sirtuin 1

MnSOD:

Mitochondrial manganese superoxide dismutase

TFAM:

Mitochondrial transcription factor A

References

  • Asunción JG, Millan A, Pla R, Bruseghini L, Esteras A, Pallardo FV, Sastre J, Viña J (1996) Mitochondrial glutathione oxidation correlates with age-associated oxidative damage to mitochondrial DNA. FASEB J 10:333–338

    PubMed  Google Scholar 

  • Ayala V, Naudi A, Sanz A, Caro P, Portero-Otin M, Barja G, Pamplona R (2007) Dietary protein restriction decreases oxidative protein damage, peroxidizability index, and mitochondrial complex I content in rat liver. J Gerontol Biol Sci 62A:352–360

    Article  CAS  Google Scholar 

  • Barja G (2002) The quantitative measurement of H2O2 generation in isolated mitochondria. J Bioenerg Biomembr 34:227–233

    Article  PubMed  CAS  Google Scholar 

  • Barja G (2004a) Free radicals and aging. Trends Neurosci 27:595–600

    Article  PubMed  CAS  Google Scholar 

  • Barja G (2004b) Aging in vertebrates and the effect of caloric restriction: a mitochondrial free radical production-DNA damage mechanism? Biol Rev 79:235–251

    Article  PubMed  Google Scholar 

  • Barja G, Herrero A (1998) Localization at Complex I and mechanism of the higher free radical production of brain non-synaptic mitochondria in the short-lived rat than in the longevous pigeon. J Bioenerg Biomembr 30:235–243

    Article  PubMed  CAS  Google Scholar 

  • Baur JA, Chen D, Chini EN, Chua K, Cohen HY, de Cabo R, Deng C, Dimmeler S, Gius D, Guarente LP, Helfand SL, Imai S, Itoh H, Kadowaki T, Koya D, Leeuwenburgh C, McBurney M, Nabeshima Y, Neri C, Oberdoerffer P, Pestell RG, Rogina B, Sadoshima J, Sartorelli V, Serrano M, Sinclair DA, Steegborn C, Tatar M, Tissenbaum HA, Tong Q, Tsubota K, Vaquero A, Verdin E (2010) Dietary restriction: standing up for sirtuins. Science 328:321–326

    Article  Google Scholar 

  • Caro P, Gómez J, López-Torres M, Sánchez I, Naudí A, Jove M, Pamplona R, Barja G (2008) Forty percent and eighty percent methionine restriction decrease mitochondrial ROS generation and oxidative stress in rat liver. Biogerontology 9:183–196

    Article  PubMed  CAS  Google Scholar 

  • Caro P, Gomez J, Sanchez I, Naudi A, Ayala V, Lopez-Torres M, Pamplona R, Barja G (2009a) Forty percent methionine restriction decreases mitochondrial oxygen radical production and leak at complex I during forward electron flow and lowers oxidative damage to proteins and mitochondrial DNA in rat kidney and brain mitochondria. Rejuv Res 12:421–434

    Article  CAS  Google Scholar 

  • Caro P, Gomez J, Sanchez I, Garcia R, López-Torres M, Naudí A, Portero-Otin M, Pamplona R, Barja G (2009b) Effect of 40 % restriction of dietary amino acids—except methionine—on mitochondrial oxidative stress and biogenesis, AIF and SIRT1 in rat liver. Biogerontol 10:579–592

    Article  CAS  Google Scholar 

  • Castro MR, Suarez E, Kraiselburd E, Isidro A, Paz J, Ferder L, Ayala-Torres S (2012) Aging increases mitochondrial DNA damage and oxidative stress in liver of rhesus monkeys. Exper Gerontol 47:29–37

    Article  CAS  Google Scholar 

  • Dhabi JM, Monte PL, Wingo J, Rowley BC, Cao SX, Waldford RL, Spindler SR (2001) Caloric restriction alters the feeding response of key metabolic enzyme genes. Mech Ageing Dev 122:1033–1048

    Article  Google Scholar 

  • Gómez J, Caro P, Sanchez I, Naudi A, Jove M, Portero-Otín M, López-Torres M, Pamplona R, Barja G (2009) Effect of methionine dietary supplementation on mitochondrial oxygen radical generation and oxidative DNA damage in rat liver and heart. J Bioenerg Biomembr 41:309–321

    Article  PubMed  Google Scholar 

  • Grandison RC, Piper MDW, Partridge L (2009) Amino acid imbalance explains extension of life span by dietary restriction in Drosophila. Nature 462:1061–1064

    Article  PubMed  CAS  Google Scholar 

  • Gredilla R, Barja G (2005) The role of oxidative stress in relation to caloric restriction and longevity. Endocrinology 146:3713–3717

    Article  PubMed  CAS  Google Scholar 

  • Gredilla R, Sanz A, Lopez-Torres M, Barja G (2001) Caloric restriction decreases mitochondrial free radical generation at Complex I and lowers oxidative damage to mitochondrial DNA in the rat heart. FASEB J 15:1589–1591

    PubMed  CAS  Google Scholar 

  • Hajnoczky G, Hoek JB (2007) Mitochondrial longevity pathways. Science 315:607–609

    Article  PubMed  Google Scholar 

  • Harman D (1972) The biological clock: the mitochondria. J Am Geriatr Soc 20:145–147

    PubMed  CAS  Google Scholar 

  • Hasek BE, Stewart LK, Henagan TM, Boudreau A, Lenard NR, Black C, Shin J, Huypens P, Malloy VL, Plaisance EP, Krajcik RA, Orentreich N, Gettys TW (2010) Dietary methionine restriction enhances metabolic flexibility and increases uncoupled respiration in both fed and fasted states. Am J Physiol 299:R728–R739

    CAS  Google Scholar 

  • Hayes JD, McMahon M, Cowdry S, Dinkova-Kostova AT (2010) Cancer chemoprevention mechanisms mediated through the Keap1-Nrf2 pathway. Antiox Redox Signal 13:1713–1748

    Article  CAS  Google Scholar 

  • Hock MB, Kralli A (2009) Transcriptional control of mitochondrial biogenesis and function. Annu Rev Physiol 71:177–203

    Article  PubMed  CAS  Google Scholar 

  • Kabil H, Kabil O, Banerjee R, Harshman LG, Pletcher SD (2011) Increased transulfuration mediates longevity and dietary restriction in Drosophila. PNAS 108:16831–16836

    Article  PubMed  CAS  Google Scholar 

  • Kalhan SC, Uppal SO, Moorman JL, Bennett C, Gruca LL, Parimi PS, Dasarathy S, Serre D, Hanson RW (2011) Metabolic and genomic response to dietary isocaloric protein restriction in the rat. J Biol Chem 286:5266–5277

    Article  PubMed  CAS  Google Scholar 

  • Kastle M, Grune T (2011) Protein oxidative modification in the aging organism and the role of the ubiquitin proteasomal system. Curr Pharm Des 17:4007–4022

    PubMed  Google Scholar 

  • Kensler TW, Wakabayashi N, Biswal S (2007) Cell survival responses to environmental stresses via the Keap1-Nrf2-ARE pathway. Annu Rev Pharmacol Toxicol 47:89–116

    Article  PubMed  CAS  Google Scholar 

  • Latorre A, Moya A, Ayala A (1986) Evolution of mitochondrial DNA in Drosophila suboscura. PNAS 83:8649–8653

    Article  PubMed  CAS  Google Scholar 

  • Liu B, Qian SB (2011) Translational regulation in nutrigenomics. Adv Nutr 2:511–519

    Article  PubMed  CAS  Google Scholar 

  • López-Lluch G, Hunt N, Jones B, Zhun M, Jamieson H, Hilmer S, Cascajo MV, Allard J, Ingram DK, Navas P, de Cabo R (2006) Calorie restriction induces mitochondrial biogenesis and bioenergetic efficiency. PNAS 103:1768–1773

    Article  PubMed  Google Scholar 

  • López-Torres M, Barja G (2008) Lowered methionine ingestion as responsible for the decrease in rodent mitochondrial oxidative stress in protein and dietary restriction. Possible implications for humans. Biochim Biophys Acta 1780:1337–1347

    Article  PubMed  Google Scholar 

  • López-Torres M, Gredilla R, Sanz A, Barja G (2002) Influence of aging and long-term caloric restriction on oxygen radical generation and oxidative DNA damage in rat liver mitochondria. Free Rad Biol Med 32:882–889

    Article  PubMed  Google Scholar 

  • Madrigano J, Baccarelli A, Mittleman MA, Sparrow D, Vokonas PS, Tarantini L, Schwartz J (2012) Aging and epigenetics: longitudinal changes in gene-specific DNA methylation. Epigenetics Jan 1; 7(1), http://dx.doi.org/10.4161/epi.7.1.187949

  • Mair W, Dillin A (2008) Aging and survival: the genetics of life span extension by dietary restriction. Annu Rev Biochem 77:727–754

    Article  PubMed  CAS  Google Scholar 

  • Malloy VL, Krajcik RA, Bailey SJ, Hristopoulos G, Plummer JD, Orentreich N (2006) Methionine restriction decreases visceral fat mass and preserves insulin action in aging male Fischer 344 rats independent of energy restriction. Aging Cell 5:305–314

    Article  PubMed  CAS  Google Scholar 

  • Miller RA, Buehner G, Chang Y, Harper JM, Sigler R, Smith-Wheelock M (2005) Methionine-deficient diet extends mouse lifespan, slows immune and lens aging, alters glucose, T4, IGF-I and insulin levels, and increases hepatocyte MIF levels and stress resistance. Aging Cell 4:119–125

    Article  PubMed  CAS  Google Scholar 

  • Min KJ, Tatar M (2006) Restriction of amino acids extends lifespan in Drosophila melanogaster. Mech Ageing Dev 127:643–646

    Article  PubMed  CAS  Google Scholar 

  • Naudí A, Caro P, Jové M, Gómez J, Boada J, Ayala V, Portero-Otín M, Barja G, Pamplona R (2007) Methionine restriction decreases endogenous oxidative molecular damage and increases mitochondrial biogenesis and uncoupling protein 4 in rat brain. Rejuv Res 10:473–484

    Article  Google Scholar 

  • Newby PK, Tucker KL, Wolk A (2005) Risk of overweight and obesity among semivegetarian, lactovegetarian, and vegan women. Am J Clin Nutr 81:1267–1274

    PubMed  CAS  Google Scholar 

  • Nisoli E, Tonello C, Cardile A, Cozzi V, Bracale R, Tedesco L, Falcone S, Valerio A, Cantoni O, Clementi E, Moncada S, Carruba MO (2005) Calorie restriction promotes mitochondrial biogenesis by inducing the expression of eNOS. Science 310:314–317

    Article  PubMed  CAS  Google Scholar 

  • Pamplona R (2011) Advanced lipoxidation end-products. Chem Biol Interact 192:14–20

    Article  PubMed  CAS  Google Scholar 

  • Pamplona R, Barja G (2011) An evolutionary comparative scan for longevity-related oxidative stress resistance mechanisms in homeotherms. Biogerontology 12:409–435

    Article  PubMed  CAS  Google Scholar 

  • Pamplona R, Barja G, Portero-Otín M (2002) Membrane fatty acid unsaturation, protection against oxidative stress, and maximum life span: a homeoviscous-longevity adaptation. Ann N Y Acad Sci 959:475–490

    Article  PubMed  CAS  Google Scholar 

  • Park SK, Prolla TA (2005) Lessons learned from gene expression profile studies of aging and caloric restriction. Ageing Res Rev 4:55–65

    Article  PubMed  CAS  Google Scholar 

  • Passarino G, Rose G, Bellizzi D (2010) Mitochondrial function, mitochondrial DNA and ageing: a reappraisal. Biogerontology 11:575–588

    Article  PubMed  CAS  Google Scholar 

  • Pérez-Campo R, López-Torres M, Cadenas S, Rojas C, Barja G (1998) The rate of free radical production as a determinant of the rate of aging: evidence from the comparative approach. J Comp Physiol B 168:149–158

    Article  PubMed  Google Scholar 

  • Petti AA, Crutchfield CA, Rabinowitz JD, Botstein D (2011) Survival of starving yeast is correlated with oxidative stress response and nonrespiratory mitochondrial function. PNAS 108:E1089–E1098

    Article  PubMed  Google Scholar 

  • Piper MDW, Partridge L, Raubenheimer D, Simpson SJ (2011) Dietary restriction and aging: a unifying perspective. Cell Metab 14:154–160

    Article  PubMed  CAS  Google Scholar 

  • Porter AG, Urbano AG (2006) Does apoptosis-inducing factor (AIF) have both life and death functions in cells? Bioassays 28:834–843

    Article  CAS  Google Scholar 

  • Richie JP Jr, Leutzinger Y, Parthasarathy S, Malloy V, Orentreich N, Zimmerman JA (1994) Methionine restriction increases blood glutathione and longevity in F344 rats. FASEB J 8:1302–1307

    PubMed  CAS  Google Scholar 

  • Robert L, Labat-Robert J, Robert AM (2010) Genetic, epigenetic and posttranslational mechanisms of aging. Biogerontol 11:387–399

    Article  CAS  Google Scholar 

  • Sánchez-Roman I, Gomez A, Gomez J, Suarez H, Sanchez C, Naudi A, Ayala V, Portero-Otin M, Lopez-Torres M, Pamplona R, Barja G (2011) Forty percent methionine restriction lowers DNA methylation, complex I ROS generation, and oxidative damage to mtDNA and mitochondrial proteins in rat heart. J Bioenerg Biomembr 43:699–708

    Article  PubMed  Google Scholar 

  • Sanz A, Barja G (2006) Estimation of the rate of production of oxygen radicals by mitochondria. In: Conn M (ed) Handbook of models for human aging. Academic Press, New York, pp 183–189

    Chapter  Google Scholar 

  • Sanz A, Caro P, Barja G (2004) Protein restriction without strong caloric restriction decreases mitochondrial oxygen radical production and oxidative DNA damage in rat liver. J Bioenerg Biomembr 36:545–552

    Article  PubMed  CAS  Google Scholar 

  • Sanz A, Gómez J, Caro P, Barja G (2006a) Carbohydrate restriction does not change mitochondrial free radical generation and oxidative DNA damage. J Bioenerg Biomembr 38:327–333

    Article  PubMed  CAS  Google Scholar 

  • Sanz A, Caro P, Gómez J, Barja G (2006b) Effect of lipid restriction on mitochondrial free radical production and oxidative DNA damage. Ann N Y Acad Sci 1067:200–209

    Article  PubMed  CAS  Google Scholar 

  • Sanz A, Soikkeli M, Portero-Otín M, Wilson A, Kemppainen E, McIlroy G, Ellilä S, Kemppainen KK, Tuomela T, Lakanmaa M, Kiviranta E, Stefanatos R, Dufour E, Hutz B, Naudí A, Jové M, Zeb A, Vartiainen S, Matsuno-Yagi A, Yagi T, Rustin P, Pamplona R, Jacobs HT (2010) Expression of the yeast NADH dehydrogenase Ndi1 in Drosophila confers increased lifespan independently of dietary restriction. Proc Natl Acad Sci USA 107:9105–9110

    Article  PubMed  CAS  Google Scholar 

  • Sohal RS, Ku HH, Agarwal S, Forster MJ, Lal H (1994) Oxidative damage, mitochondrial oxidant generation and antioxidant defenses during aging and in response to food restriction. Mech Ageing Dev 74:121–133

    Article  PubMed  CAS  Google Scholar 

  • St-Pierre J, Buckingmham JA, Roebuck SJ, Brand MD (2002) Topology of superoxide production from different sites in the mitochondrial electron transport chain. J Biol Chem 277:44784–44790

    Article  PubMed  CAS  Google Scholar 

  • Sun L, Amir A, Akha S, Millar RA, Harper J (2009) Life-span extension in mice by preweaning food restriction and by methionine restriction in middle age. J Gerontol A Biol Sci Med Sci 64A:711–722

    Article  CAS  Google Scholar 

  • Taguchi A, White MF (2008) Insulin-like signalling, nutrient homeostasis, and life span. Annu Rev Physiol 70:191–212

    Article  PubMed  CAS  Google Scholar 

  • Treberg JR, Quinlan CL, Brand MD (2011) Evidence for two sites of superoxide production by mitochondrial NADH-ubiquinone oxidoreductase (complex I). J Biol Chem 286:27103–27110

    Article  PubMed  CAS  Google Scholar 

  • Vahsen N, Cande C, Briere JJ, Benit P, Joza N, Larochette N, Mastroberardino PG, Pequignot MO, Casares N, Lazar V, Feraud O, Debili N, Wissing S, Engelhardt S, Madeo F, Piacentini M, Penninger JM, Schagger H, Rustin P, Kroemer G (2004) AIF deficiency compromises oxidative phosphorylation. EMBO J 23:4679–4689

    Article  PubMed  CAS  Google Scholar 

  • Vang A, Singh PN, Lee JW, Haddad EH, Brinegar CH (2008) Meats, processed meats, obesity, weight gain and occurrence of diabetes among adults: findings from Adventist Health Studies. Ann Nutr Metab 52:96–104

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This investigation was supported in part by I + D grants from the Spanish Ministry of Science and Innovation (BFU2008-00335/BFI) and a UCM/BSCH Grant in 2010 to G. Barja; and I + D grants from the Spanish Ministry of Science and Innovation (BFU2009-118/79BFI) and the Generalitat of Catalonia (2009SGR735) to R. Pamplona. I. Sanchez received a pre-doctoral fellowship from the Spanish Ministry of Education (FPU) and A. Gomez received a fellowship from the Spanish Ministry of Science and Innovation (FPI). We thank David Argiles for excellent technical assistance.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gustavo Barja.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sanchez-Roman, I., Gómez, A., Pérez, I. et al. Effects of aging and methionine restriction applied at old age on ROS generation and oxidative damage in rat liver mitochondria. Biogerontology 13, 399–411 (2012). https://doi.org/10.1007/s10522-012-9384-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10522-012-9384-5

Keywords

Navigation