Skip to main content
Log in

Simulation of strong ground motion on near-fault rock outcrop for engineering purposes: the case of the city of Xanthi (northern Greece)

  • Original Research Paper
  • Published:
Bulletin of Earthquake Engineering Aims and scope Submit manuscript

Abstract

We combine probabilistic and deterministic approaches in an attempt to tackle a challenging topic in engineering seismology, that of the prediction of strong ground motion in urban areas located close to active faults, with sparse modern seismicity. The case we study is the city of Xanthi in northern Greece and we generate bedrock synthetic time series to be used as input motions into site-specific site effect analysis. We re-assess the seismic hazard using the probabilistic method and then perform hazard deaggregation in order to define realistic earthquake scenarios, which we examine in a deterministic way. The scenarios examined are: (a) a reference earthquake of M6.7, return period 100 years and at ~30 km distance from the city and (b) a reference earthquake of M5.8, return period 475 years and at ~3 km distance from the city of Xanthi. To compute synthetic time series for the distant source, we apply the stochastic method for finite faults. For the near-fault earthquake scenario we adopt a hybrid deterministic-stochastic approach that includes the semi-analytical method implemented in the COMPSYN code for the low frequency (~<3 Hz) part of the spectrum and the stochastic method for the high-frequency (~>3 Hz). The results of the probabilistic and the deterministic approaches converge to a satisfactory degree.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  • Ambraseys N (2009) Earthquakes in the Mediterranean and Middle East. Cambridge University Press, Cambridge. doi:10.1017/CBO9781139195430

    Book  Google Scholar 

  • Ameri G, Pacor F, Cultrera G, Franceschina G (2008) Deterministic ground-motion scenarios for engineering applications: the case of Thessaloniki, Greece. Bull Seismol Soc Am 98:1289–1303. doi:10.1785/0120070114

    Article  Google Scholar 

  • Anderson JG, Hough SE (1984) A model for the shape of the Fourier amplitude spectrum of acceleration at high frequencies. Bull Seismol Soc Am 74:1969–1993

    Google Scholar 

  • Atkinson GM, Boore DM (1995) Ground-motion relations for eastern North America. Bull Seismol Soc Am 85:17–30

    Google Scholar 

  • Bazzurro P, Cornel CA (1999) Deaggregation of seismic hazard. Bull Seismol Soc Am 89:501–520

    Google Scholar 

  • Benetatos CA, Kiratzi AA (2004) Stochastic strong ground motion simulation of intermediate depth earthquakes: the cases of the 30 May 1990 Vrancea (Romania) and of the 22 January 2002 Karpathos island (Greece) earthquakes. Soil Dyn Earthq Eng 24:1–9. doi:10.1016/j.soildyn.2003.10.003

    Article  Google Scholar 

  • Beresnev IA, Atkinson GM (1997) Modeling finite-fault radiation from the ωn spectrum. Bull Seismol Soc Am 87:67–84

    Google Scholar 

  • Boore DM (1983) Stochastic simulation of high-frequency ground motions based on seismological models of the radiated spectra. Bull Seismol Soc Am 73:1865–1894

    Google Scholar 

  • Boore DM (2003) Simulation of ground motion using the stochastic method. Pure Appl Geophys 160:635–676

    Article  Google Scholar 

  • Boore DM (2009) Comparing stochastic point-source and finite-source ground-motion simulations: SMSIM and EXSIM. Bull Seismol Soc Am 99:3202–3216. doi:10.1785/0120090056

    Article  Google Scholar 

  • Brune JN (1970) Tectonic stress and the spectra of seismic shear waves from earthquakes. J Geophys Res 75:4997–5009

    Article  Google Scholar 

  • Brune JN (1971) Correction. J Geophys Res 76:5002

    Article  Google Scholar 

  • Caputo R, Chatzipetros A, Pavlides S, Sboras S (2012) The Greek database of seismogenic sources (GreDaSS): state-of-the-art for northern Greece. Ann Geophys 55:859–894. doi:10.4401/ag-5168

    Google Scholar 

  • Chapman MC (1995) A probabilistic approach to ground-motion selection for engineering design. Bull Seismol Soc Am 85:937–942

    Google Scholar 

  • Cramer CH, Petersen MD (1996) Predominant seismic source distance and magnitude maps for Los Angeles, Orange, and Ventura counties, California. Bull Seismol Soc Am 86:1645–1649

    Google Scholar 

  • Douglas J, Aochi H (2008) A survey of techniques for predicting earthquake ground motions for engineering purposes. Surv Geophys 29:187–220. doi:10.1007/s10712-008-9046-y

    Article  Google Scholar 

  • Feng L, Newman AV, Farmer GT, Psimoulis P, Stiros SC (2010) Energetic rupture, coseismic and post-seismic response of the 2008 MW 6.4 Achaia-Elia Earthquake in northwestern Peloponnese, Greece: an indicator of an immature transform fault zone. Geophys J Int 183:103–110. doi:10.1111/j.1365-246X.2010.04747.x

    Article  Google Scholar 

  • Frankel A (2013a) Comment on “Why earthquake hazard maps often fail and what to do about it” by S. Stein, R. Geller, and M. Liu. Tectonophysics 592:200–206. doi:10.1016/j.tecto.2012.11.032

    Article  Google Scholar 

  • Frankel A (2013b) Corrigendum to comment on “Why Earthquake Hazard Maps Often Fail and What to do About It” by S. Stein, R. Geller, and M. Liu [TECTO 592(2013) 200–206]. Tectonophysics 608:1453–1454. doi:10.1016/j.tecto.2013.08.010

    Article  Google Scholar 

  • Gallovič F, Zahradník J, Křížová D, Plicka V, Sokos E, Serpetsidaki A, Tselentis G-A (2009) From earthquake centroid to spatial-temporal rupture evolution: Mw 6.3 Movri Mountain earthquake, June 8, 2008, Greece. Geophys Res Lett 36:L21310. doi:10.1029/2009GL040283

    Article  Google Scholar 

  • Ganas A, Serpelloni E, Drakatos G, Kolligri M, Adamis I, Tsimi C, Batsi E (2009) The Mw 6.4 SW-Achaia (Western Greece) Earthquake of 8 June 2008: seismological, Field, GPS Observations, and Stress Modeling. J Earthq Eng 13:1101–1124. doi:10.1080/13632460902933899

    Article  Google Scholar 

  • GEER/EERI/ATC (2014) GEER Report for the 2014 Cephalonia, Greece Earthquakes [WWW Document]

  • Harmsen S (2001) Geographic Deaggregation of Seismic Hazard in the United States. Bull Seismol Soc Am 91:13–26. doi:10.1785/0120000007

    Article  Google Scholar 

  • Haslinger F, Kissling E, Ansorge J, Hatzfeld D, Papadimitriou E, Karakostas V, Makropoulos K, Kahle H-G, Peter Y (1999) 3D crustal structure from local earthquake tomography around the Gulf of Arta (Ionian region, NW Greece). Tectonophysics 304:201–218. doi:10.1016/S0040-1951(98)00298-4

    Article  Google Scholar 

  • Hatzidimitriou PM (1993) Attenuation of coda waves in northern Greece. Pure appl Geophys 140:63–78. doi:10.1007/BF00876871

    Article  Google Scholar 

  • Hatzidimitriou PM (1995) S-wave attenuation in the crust in northern Greece. Bull Seismol Soc Am 85:1381–1387

    Google Scholar 

  • Karastathis VK, Papadopoulos GA, Novikova T, Roumelioti Z, Karmis P, Tsombos P (2010) Prediction and evaluation of nonlinear site response with potentially liquefiable layers in the area of Nafplion (Peloponnesus, Greece) for a repeat of historical earthquakes. Nat Hazards Earth Syst Sci 10:2281–2304. doi:10.5194/nhess-10-2281-2010

    Article  Google Scholar 

  • Kiratzi AA (2014) Mechanisms of earthquakes in Aegean. In: Beer M, Kougioumtzoglou IA, Patelli E, Siu-Kui Au I (eds) Encyclopedia of Earthquake engineering. Springer, Berlin Heidelberg, pp 1–22. doi:10.1007/978-3-642-36197-5_299-1

    Chapter  Google Scholar 

  • Kiratzi AA, Klimis N, Theodoulidis N, Margaris BN, Makra K, Christaras B, Chatzipetros A, Papathanassiou G, Savvaidis A, Pavlides SB, Roumelioti Z, Sapountzi L, Diamantis I, Lazaridis T, Petala E, Mimidis K (2013) Characterization of site conditions in Greece for realistic seismic ground motion simulations: pilot application in urban areas. Bull Geol Soc Greece XLVII:1148–1157

    Google Scholar 

  • Klimis N, Margaris BN, Anastasiadis A, Koliopoulos P, Kirtas E (2006) Smoothed Hellenic rock site amplification factors [in Greek]. In: Proceedings of the 5th Hellenic congress of geotechnical and geoenvironmental engineering, vol 2, pp 239–246

  • Konstantinou KI, Melis NS, Lee S-J, Evangelidis CP, Boukouras K (2009) Rupture process and aftershocks relocation of the 8 June 2008 Mw 6.4 Earthquake in Northwest Peloponnese, Western Greece. Bull Seismol Soc Am 99:3374–3389. doi:10.1785/0120080301

    Article  Google Scholar 

  • Konstantinou KI, Evangelidis CP, Melis NS (2011) The 8 June 2008 Mw 6.4 Earthquake in Northwest Peloponnese, Western Greece: a case of fault reactivation in an overpressured lower crust? Bull Seismol Soc Am 101:438–445. doi:10.1785/0120100074

    Article  Google Scholar 

  • Koskosidi A (2014) Site-specific seismic response analysis accounting for soil profile variability in the case city of Xanthi, MSc thesis, Imperial College, London

  • Koukouvelas I, Pe-Piper G (1991) The Oligocene Xanthi pluton, northern Greece: a granodiorite emplaced during regional extension. J Geol Soc Lond 148:749–758. doi:10.1144/gsjgs.148.4.0749

    Article  Google Scholar 

  • Mai PM, Beroza GC (2003) A hybrid method for calculating near-source, broadband seismograms: application to strong motion prediction. Phys Earth Planet Inter 137:183–199. doi:10.1016/S0031-9201(03)00014-1

    Article  Google Scholar 

  • Margaris BN (1994) Azimuthal dependence of the seismic waves and its influence in the seismic hazard assessment in the area of Greece. Aristotle University of Thessaloniki, Thessaloniki

    Google Scholar 

  • Margaris BN, Boore DM (1998) Determination of Δσ and κo from response spectra of large earthquakes in Greece. Bull Seismol Soc Am 88:170–182

    Google Scholar 

  • Margaris B, Athanasopoulos G, Mylonakis G, Papaioannou C, Klimis N, Theodulidis N, Savvaidis A, Efthymiadou V, Stewart JP (2010a) The 8 June 2008 M w 6.5 Achaia-Elia, Greece Earthquake: source characteristics, ground motions, and ground failure. Earthq Spectra 26:399–424. doi:10.1193/1.3353626

    Article  Google Scholar 

  • Margaris B, Athanasopoulos G, Mylonakis G, Papaioannou C, Klimis N, Theodulidis N, Savvaidis A, Efthymiadou V, Stewart JP (2010b) Erratum: “The 8 June 2008 Mw 6.5 Achaia-Elia, Greece, Earthquake: Source Characteristics, Ground Motions, and Ground Failures” [Earthquake Spectra 26, 399–424 (2010)]. Earthq Spectra 26:1141. doi:10.1193/1.3486689

    Article  Google Scholar 

  • Martin L (1987) Structure et évolution récente de la Mer Égée, apports d’une étude par sismique réflexion, PhD Thèse, Université Paris 6, Villefranche-Sur-Mer

  • Mavroeidis GP, Papageorgiou AS (2003) A mathematical representation of near-fault ground motions. Bull Seismol Soc Am 93:1099–1131

    Article  Google Scholar 

  • McGuire RK (1995) Probabilistic seismic hazard analysis and design earthquakes: closing the loop. Bull Seismol Soc Am 85:1275–1284

    Google Scholar 

  • Motazedian D, Atkinson GM (2005) Stochastic finite-fault modeling based on a dynamic corner frequency. Bull Seismol Soc Am 95:995–1010. doi:10.1785/0120030207

    Article  Google Scholar 

  • Mountrakis DM, Tranos MD (2004) The Kavala-Xanthi-Komotini fault (KXKF): a complicated active fault zone in Eastern Macedonia-Thrace (Northern Greece). In: Chatzipetros A, Pavlides S (eds), Proceedings of the 5th International symposium on eastern mediterranean geology, pp 857–860

  • Mountrakis DM, Tranos M, Papazachos C, Thomaidou E, Karagianni E, Vamvakaris D (2006) Neotectonic and seismological data concerning major active faults, and the stress regimes of Northern Greece. Geol Soc Lond Spec Publ 260:649–670. doi:10.1144/GSL.SP.2006.260.01.28

    Article  Google Scholar 

  • Mountrakis D, Kilias A, Pavlaki A, Fassoulas C, Thomaidou E, Papazachos C, Papaioannou C, Roumelioti Z, Benetatos C, Vamvakaris D (2012) Neotectonic study of the Western Crete and implications for seismic hazard assessment. J Virtual Explor. doi:10.3809/jvirtex.2011.00285

    Google Scholar 

  • Olson AH, Orcutt JA, Frazier GA (1984) The discrete wavenumber/finite element method for synthetic seismograms. Geophys J R Astr Soc 77:421–460

    Article  Google Scholar 

  • Papadopoulos GA, Karastathis V, Kontoes C, Charalampakis M, Fokaefs A, Papoutsis I (2010) Crustal deformation associated with east Mediterranean strike–slip earthquakes: the 8 June 2008 Movri (NW Peloponnese), Greece, earthquake (Mw6.4). Tectonophysics 492:201–212. doi:10.1016/j.tecto.2010.06.012

    Article  Google Scholar 

  • Papaioannou CA, Papazachos BC (2000) Time-independent and time-dependent seismic hazard in Greece based on seismogenic sources. Bull Seismol Soc Am 90:22–33

    Article  Google Scholar 

  • Papazachos CB (1998) Crustal P- and S-velocity structure of the Serbomacedonian Massif (Northern Greece) obtained by non-linear inversion of travel times. Geophys J Int 134:25–39. doi:10.1046/j.1365-246x.1998.00558.x

    Article  Google Scholar 

  • Papazachos BC, Papazachou C (1997) The earthquakes of Greece [in Greek], 2nd edn. Ziti Editions, Thessaloniki

    Google Scholar 

  • Papazachos BC, Papazachou C (2003) The earthquakes of Greece [in Greek], 2nd edn. Ziti Editions, Thessaloniki

    Google Scholar 

  • Papazachos BC, Mountrakis DM, Papazachos CB, Tranos MD, Karakaisis GF, Savvaidis AS (2001). The faults that caused known strong earthquakes in Greece and its surroundings from the fifth century B.C. until today [in Greek]. In: Proceedings of the 2nd Panhellenic conference of earthquake engineering and engineering seismology. Thessaloniki, pp 17–26

  • Risk Engineering, I (1995) FRISK88M User’s Manual, ver. 1.70

  • Roumelioti Z, Kiratzi AA, Theodulidis N (2004) Stochastic strong ground-motion simulation of the 7 September 1999 Athens (Greece) earthquake. Bull Seismol Soc Am 94:1036–1052. doi:10.1785/0120030219

    Article  Google Scholar 

  • Sboras S (2012) The Greek Database of Seismogenic Sources: seismotectonic implications for North Greece. University of Ferrara, Ferrara

    Google Scholar 

  • Serpetsidaki A, Elias P, Ilieva M, Bernard P, Briole P, Deschamps A, Lambotte S, Lyon-Caen H, Sokos E, Tselentis G-A (2014) New constraints from seismology and geodesy on the Mw = 6.4 2008 Movri (Greece) earthquake: evidence for a growing strike-slip fault system. Geophys J Int 198:1373–1386. doi:10.1093/gji/ggu212

    Article  Google Scholar 

  • Skarlatoudis AA, Papazachos CB, Margaris BN, Theodulidis N, Papaioannou C, Kalogeras I, Scordilis EM, Karakostas V (2003) Empirical peak ground-motion predictive relations for shallow earthquakes in Greece. Bull Seismol Soc Am 93:2591–2603

    Article  Google Scholar 

  • Skarlatoudis AA, Papazachos CB, Margaris BN, Theodulidis N, Papaioannou C, Kalogeras I, Scordilis EM, Karakostas V (2007) Erratum to empirical peak ground-motion predictive relations for shallow earthquakes in Greece. Bull Seismol Soc Am 97:2219–2221. doi:10.1785/0120070176

    Article  Google Scholar 

  • Spudich P, Archuleta RJ (1987) Seismic strong motion synthetics, seismic strong motion synthetics. Elsevier, Amsterdam. doi:10.1016/B978-0-12-112251-5.50009-1

    Google Scholar 

  • Spudich P, Xu L (2003) 85.14 Software for calculating earthquake ground motions from finite faults in vertically varying media, International Geophysics. Int Geophys. doi:10.1016/S0074-6142(03)80293-0

    Google Scholar 

  • Stein S, Stein J (2014) Playing against nature: integrating science and economics to mitigate natural hazards in an uncertain world. Wiley, Hoboken

    Book  Google Scholar 

  • Stein RS, Stirling MW (2015) Seismic hazard assessment: Honing the debate testing the models, vol 96. Eos, Washington. doi:10.1029/2015EO031841

    Google Scholar 

  • Stepp JC, Silva WJ, McGuire RK, Sewell RW (1993) Determination of earthquake design loads for a high level nuclear waste repository facility. In: Fourth DOE natural phenomena hazards mitigation conference. Lawrence Livermore National Lab., CA (USA), Atlanta, GA (USA), pp 651–657

  • Street RL, Herrmann RB, Nuttli OW (1975) Spectral characteristics of the Lg wave generated by Central United States Earthquakes. Geophys J Int 41:51–63. doi:10.1111/j.1365-246X.1975.tb05484.x

    Article  Google Scholar 

  • Theodoulidis N, Klimis N, Savvaidis A, Margaris BN, Chatzipetros AA, Papathanassiou G, Roumelioti Z, Makra K, Anthymidis M, Diamantis I, Mimidis K, Petala E, Lazaridis T, Zargli E, Kiratzi AA, Christaras B, Kontoe S, Sapountzi L (2014). Defining shallow structure properties by composing geophysical, geological and geotechnical data for site response analysis: the case of Xanthi city (northeastern Hellas). In: Proceedings of the 2nd European conference on earthquake engineering and seismology. Istanbul, Turkey

  • Theodulidis N, Roumelioti Z, Panou A, Savvaidis A, Kiratzi A, Grigoriadis V, Dimitriu P, Chatzigogos T (2006) Retrospective prediction of macroseismic intensities using strong ground motion simulation: the Case of the 1978 Thessaloniki (Greece) Earthquake (M6.5). Bull Earthq Eng 4:101–130. doi:10.1007/s10518-006-9001-6

    Article  Google Scholar 

  • Wells DL, Coppersmith KJ (1994) New empirical relationships among magnitude, rupture length, rupture width, rupture area, and surface displacement. Bull Seismol Soc Am 84:974–1002

    Google Scholar 

  • Zahradník J, Gallovič F (2010) Toward understanding slip inversion uncertainty and artifacts. J Geophys Res 115:B09310. doi:10.1029/2010JB007414

    Article  Google Scholar 

Download references

Acknowledgments

This research has been carried out within the framework of the Project “THALES: MIS 377335 SITE-CLASSIFICATION—Characterization of site conditions in Greece for realistic seismic ground motion simulations: pilot application in urban areas” co-financed by the European Union (European Social Fund—ESF) and Greek national funds through the Operational Program “Education and Lifelong Learning”. Thanks are due to N. Theodoulidis, N. Klimis and to all team members who provided valuable comments during many project meetings. We acknowledge with gratitude P. Spudich for providing the latest version of the COMPSYN code and valuable advice on its application. We are also grateful to the two anonymous reviewers for their constructive comments which improved the original submission.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Kiratzi.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 288 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Roumelioti, Z., Kiratzi, A., Margaris, B. et al. Simulation of strong ground motion on near-fault rock outcrop for engineering purposes: the case of the city of Xanthi (northern Greece). Bull Earthquake Eng 15, 25–49 (2017). https://doi.org/10.1007/s10518-016-9949-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10518-016-9949-9

Keywords

Navigation