Skip to main content
Log in

Generation of stochastic earthquake ground motion in western Saudi Arabia as a first step in development of regional ground motion prediction model

  • Original Paper
  • Published:
Arabian Journal of Geosciences Aims and scope Submit manuscript

Abstract

Earthquake ground motion model is an essential part of seismic hazard assessment. The model consists in several empirical ground motion prediction equations (GMPEs) that are considered to be applicable to the given region. When the recorded ground motion data are scarce, numerical modeling of ground motion based on available seismological information is widely used. We describe results of stochastic simulation of ground motion acceleration records for western Saudi Arabia. The simulation was performed using the finite fault model and considering peak ground acceleration and amplitudes of spectral acceleration at natural frequencies 0.2 and 1.0 s. Based on the parameters of the input seismological model that were accepted in similar previous studies, we analyze influence of variations in the source factor (stress drop) and in the local attenuation and amplification factors (kappa value, crustal amplification). These characteristics of the model are considered as the major contributors to the ground motion variability. The results of our work show that distribution of simulated ground motion parameters versus magnitude and distance reveals an agreement with the GMPEs recently used in seismic hazard assessment for the region. Collection of credible information about seismic source, propagation path, and site attenuation parameters using the regional ground motion database would allow constraining the seismological model and developing regional GMPEs. The stochastic simulation based on regional seismological model may be applied for generation of ground motion time histories used for development of analytical fragility curves for typical constructions in the region.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Akkar S, Sandikkaya MA, Bommer JJ (2014) Empirical ground-motion models for point- and extended-source crustal earthquake scenarios in Europe and the Middle East. Bull Earthq Eng 12(1):359–387. https://doi.org/10.1007/s10518-013-9461-4

    Article  Google Scholar 

  • Al Amri A, Abdelrahman K, Andreae MO, Al-Dabbagh M (2017) Crustal and upper mantle structures beneath the Arabian Shield and Red Sea. In: Roure F, Amin A, Khomsi S, Al Garni M (eds) Lithosphere dynamics and sedimentary basins of the Arabian Plate and surrounding areas. Frontiers in Earth Sciences. Springer, pp 3–29, doi: https://doi.org/10.1007/978-3-319-44726-1_1

  • Al Atik L, Abrahamson N, Bommer JJ, Scherbaum F, Cotton F, Kuehn N (2010) The variability of ground-motion prediction models and its components. Seismol Res Lett 81(5):794–801. https://doi.org/10.1785/gssrl.81.5.794

    Article  Google Scholar 

  • Al-Besher ZI (2013) Seismic hazard assessment for Tabuk City, NW Saudi Arabia. Journal of Geoscience and Environment Protection 1(3):7–11. https://doi.org/10.4236/gep.2013.13002

    Article  Google Scholar 

  • Albidah A, Altheeb A, Lam N (2011) Stochastic attenuation modeling: Saudi Arabian case study. Australian Earthquake Engineering Society Conference, 18–20 November 2011, Novotel Barossa Valley, South Australia

  • Aldamegh K, Sandvol E, Barazangi M (2005) Crustal structure of the Arabian plate: new constraints from the analysis of teleseismic receiver functions. Earth Planet Sci Lett 231:177–196

    Article  Google Scholar 

  • Aldamegh KS, Elenean KA, Hussein HM, Rodgers AJ (2009) Source mechanisms of the June 2004 Tabuk earthquake sequence, eastern Red Sea margin, Kingdom of Saudi Arabia. J Seismol 13(4):561–576. https://doi.org/10.1007/s10950-008-9148-5

    Article  Google Scholar 

  • Al-Haddad M, Al-Refeai T, Al-Amri A (2001) Geotechnical investigation for earthquake resistant design in the Kingdom, phase I, western coast. Final report, King Abdulaziz City for Science and Technology, (KACST- grant no. AR-14-77), Riyadh

  • Almadani S, Al-Amri A, Fnais M, Abdelrahman K, Ibrahim E, Abdelmoneim E (2015) Seismic hazard assessment for Yanbu metropolitan area, western Saudi Arabia. Arab J Geosci 8(11):9945–9958. https://doi.org/10.1007/s12517-015-1930-4

    Article  Google Scholar 

  • Al-Malki MA, Al-Amri AM (2013) Seismic zones regionalization and hazard assessment of SW Arabian Shield and southern Red Sea region. In: Al Hosani K et al., (eds.) Lithosphere dynamics and sedimentary basins: the Arabian plate and analogues, Springer Frontiers in Earth Sciences, 317-331, doi: https://doi.org/10.1007/978-3-642-30609-9-16

  • Ambraseys NN, Melville CP, Adams RD (1994) The seismicity of Egypt, Arabia and the Red Sea: a historical review. Cambridge University Press, Great Britain, 181 pp. https://doi.org/10.1017/CBO9780511524912

    Book  Google Scholar 

  • Ameri G, Drouet S, Traversa P, Bindi D, Cotton F (2017) Toward an empirical ground motion prediction equation for France: accounting for regional differences in the source stress parameter. Bull Earthq Eng, online first 15(11):4681–4717. https://doi.org/10.1007/s10518-017-0171-1

    Article  Google Scholar 

  • Anderson J, Hough S (1984) A model for the shape of the Fourier amplitude spectrum of acceleration at high frequencies. Bull Seismol Soc Am 74:1969–1993

    Google Scholar 

  • Assatourians K, Atkinson GM (2007) Modeling variable-stress distribution with the stochastic finite-fault technique. Bull Seismol Soc Am 97(6):1935–1949. https://doi.org/10.1785/120060203

    Article  Google Scholar 

  • Atkinson GM, Boore DM (1995) Ground-motion relations for eastern North America. Bull Seismol Soc Am 85:17–30

    Google Scholar 

  • Atkinson GM, Boore DM (1998) Evaluation of models for earthquake source spectra in eastern North America. Bull Seismol Soc Am 88:917–934

    Google Scholar 

  • Atkinson GM, Boore DM (2006) Earthquake ground-motion prediction equations for eastern North America. Bull Seismol Soc Am 96(6):2181–2205. https://doi.org/10.1785/0120050245

    Article  Google Scholar 

  • Atkinson GM, Boore DM (2011) Modifications to existing ground-motion prediction equations in light of new data. Bull Seismol Soc Am 101(3):1121–1135. https://doi.org/10.1785/0120100270

    Article  Google Scholar 

  • Atkinson GM, Assatourians K, Boore DM, Campbell K, Motazedian D (2009) A guide to differences between stochastic point-source and stochastic finite-fault simulations. Bull Seismol Soc Am 99:3192–3201. https://doi.org/10.1785/1020090058.

    Article  Google Scholar 

  • Beresnev IA, Atkinson GM (1997) Modeling finite-fault radiation from the ωn spectrum. Bull Seismol Soc Am 87:67–84

    Google Scholar 

  • Beresnev IA, Atkinson GM (1998) FINSIM—a FORTRAN program for simulating stochastic acceleration time histories from finite faults. Seismol Res Lett 69(1):27–32. https://doi.org/10.1785/gssrl.69.1.27

    Article  Google Scholar 

  • Beresnev IA, Atkinson GM (1999) Generic finite-fault model for ground-motion prediction in eastern North America. Bull Seismol Soc Am 89:608–625

    Google Scholar 

  • Bommer JJ (2012) Challenges of building logic trees for probabilistic seismic hazard analysis. Earthquake Spectra 28(4):1723–1735. https://doi.org/10.1193/1.4000079

    Article  Google Scholar 

  • Bommer JJ, Douglas J, Scherbaum F, Cotton F, Bungum H, Fäh D (2010) On the selection of ground-motion prediction equations for seismic hazard analysis. Seismol Res Lett 81(5):783–793. https://doi.org/10.1785/gssrl.81.5.783

    Article  Google Scholar 

  • Bommer JJ, Coppersmith KJ, Coppersmith RT, Hanson KL, Mangongolo A, Neveling J, Rathje EM, Rodriguez-Marek A, Scherbaum F, Shelembe R, Stafford PJ, Strasser FO (2015) A SSHAC level 3 probabilistic seismic hazard analysis for a new-build nuclear site in South Africa. Earthquake Spectra 31(2):661–698. https://doi.org/10.1193/060913EQS145M

    Article  Google Scholar 

  • Bora SS, Cotton F, Sherbaum F, Edwards B, Traversa P (2017) Stochastic source, path and site attenuation parameters and associated variabilities for shallow crustal European earthquakes. Bulletin Earthq Eng, online first 15(11):4531–4561. https://doi.org/10.1007/s10518-017-0167-x

    Article  Google Scholar 

  • Boore DM (1983) Stochastic simulation of high-frequency ground motion based on seismological model of the radiated spectra. Bull Seismol Soc Am 73:1865–1894

    Google Scholar 

  • Boore DM (2003) Simulation of ground motion using the stochastic method. Pure Appl Geophys 160(3):635–676. https://doi.org/10.1007/PL00012553

    Article  Google Scholar 

  • Boore DM (2015). Notes on relating density to velocity for use in site amplification calculations. http://www.daveboore.com/daves_notes/daves_notes_on_relating_density_to_velocity_v3.0.pdf

  • Boore DM, Atkinson GM (2008) Ground-motion prediction equations for the average horizontal component of PGA, PGV, and 5%-damped PSA at spectral periods between 0.01 s and 10.0 s. Earthquake Spectra 24(1):99–138. https://doi.org/10.1193/1.2830434

    Article  Google Scholar 

  • Boore DM, Thompson EM (2014) Path durations for use in the stochastic-method simulation of ground motions. Bull Seismol Soc Am 104(5):2541–2552. https://doi.org/10.1785/0120140058

    Article  Google Scholar 

  • Brune JN (1970) Tectonic stress and the spectra of seismic shear waves from earthquakes. J Geophys Res 75(26):4997–5009. https://doi.org/10.1029/JB075i026p04997

    Article  Google Scholar 

  • Campbell KW, Bozorgnia Y (2008) NGA ground motion model for the geometric mean horizontal component of PGA, PGV, PGD and 5%-damped linear elastic response spectra at periods ranging from 0.1 s to 10.0 s. Earthquake Spectra 24(1):139–171. https://doi.org/10.1193/1.2857546

    Article  Google Scholar 

  • Chandler A, Lam N, Tsang H (2006) Near surface attenuation modelling based on rock shear—wave velocity profile. Soil Dyn Earthq Eng 26(11):1004–1014

    Article  Google Scholar 

  • Cotton F, Scherbaum F, Bommer JJ, Bungum H (2006) Criteria for selecting and adjusting ground-motion models for specific target regions: application to central Europe and rock sites. J Seismol 10(2):137–156. https://doi.org/10.1007/s10950-005-9006-7

    Article  Google Scholar 

  • D’Amico M, Tiberti MM, Russo E, Pacor F, Basili R (2017) Ground-motion variability for single site and single source through deterministic stochastic method simulations: implications for PSHA. Bulletin of the seismological Society of America 107: 966-983, doi: 0.1785/0120150377

  • Danciu L, Kale O, Akkar S (2016) The 2014 earthquake model of the Middle East: ground motion model and uncertainties. Bull Earthq Eng. https://doi.org/10.1007/s10518-016-9989-1

  • Drouet S, Cotton F (2015) Regional stochastic GMPEs in low-seismicity areas: scaling and aleatory variability analysis—application to the French Alps. Bull Seismol Soc Am 105(4):1883–1902. https://doi.org/10.1785/0120140240

    Article  Google Scholar 

  • Drouet S, Chevrot S, Cotton F, Souriau A (2008) Simultaneous inversion of source spectra, attenuation parameters, and site responses: application to the data of the French accelerometric network. Bull Seismol Soc Am 98(1):198–219. https://doi.org/10.1785/0120060215

    Article  Google Scholar 

  • Drouet S, Cotton F, Gueguen P (2010) Vs30, κ, regional attenuation and MW from small magnitude events accelerogramms. Geophys J Int 182:880–898

    Article  Google Scholar 

  • Edwards B, Fäh F (2013) A stochastic ground-motion model for Switzerland. Bull Seismol Soc Am 103(1):78–98. https://doi.org/10.1785/0120110331

    Article  Google Scholar 

  • El-Hadidy SY (2015) Seismicity and seismotectonic setting of the Red Sea and adjacent areas. In: Rasul NMA, Stewart ICF (eds.), The Red Sea, Springer, pp 151–159

    Google Scholar 

  • Fnais FS (2011) Ground-motion simulation for the Eastern province of Saudi Arabia using a stochastic model. WIT transactions on the built. Environment 120. https://doi.org/10.2495/ERES110121

  • Hamzehloo H, Mahood M (2012) Ground-motion attenuation relationship for East Central Iran. Bull Seismol Soc Am 102(6):2677–2684. https://doi.org/10.1785/0120110249

    Article  Google Scholar 

  • Hanks TC, McGuire RK (1981) The character of high frequency strong ground motion. Bull Seismol Soc Am 71:2071–2095

    Google Scholar 

  • Hartzell SH (1978) Earthquake aftershocks as Green’s functions. Geophys Res Lett 5(1):1–4. https://doi.org/10.1029/GL005i001p00001

    Article  Google Scholar 

  • Ghofrani H, Atkinson GM, Goda K, Assatourians K (2013) Stochastic finite-fault simulations of the 2011 Tohoku, Japan, earthquake. Bull Seismol Soc Am 103(2B):1307–1320. https://doi.org/10.1785/0120120228

    Article  Google Scholar 

  • Graves R, Pitarka A (2010) Broadband ground motion simulation using a hybrid approach. Bull Seismol Soc Am 100(5A):2095–2123. https://doi.org/10.1785/0120100057

    Article  Google Scholar 

  • Gusev AA, Pavlov VM (2009) Broadband simulation of earthquake ground motion by a spectrum-matching, multiple-pulse technique. Earthquake Spectra 25(2):257–276. https://doi.org/10.1193/1.3105335

    Article  Google Scholar 

  • Kale Ö, Akkar S (2017) A ground-motion logic-tree scheme for regional seismic hazard studies. Earthq Spectra, in press, doi 33(3):837–856. https://doi.org/10.1193/051316EQS080M

    Article  Google Scholar 

  • Klinger Y, Rivera L, Haessler M, Maurin JC (1999) Active faulting in the Gulf of Aqaba: new knowledge from the Mw 7.3 earthquake of 22 November 1995. Bull Seismol Soc Am 89:1025–1036

    Google Scholar 

  • Klügel J-U, Mualchin L, Panza GF (2006) A scenario-based procedure for seismic risk analysis. Eng Geol 88:1–22

    Article  Google Scholar 

  • Mai PM, Beroza GC (2003) A hybrid method for calculating near-source broadband seismograms: application to strong motion prediction. Phys Earth Planet Inter 137:183–199

    Article  Google Scholar 

  • Malagnini L, Scognamiglio L, Mercuri A, Akinci A, Mayeda K (2008) Strong evidence for non-similar earthquake source scaling in central Italy. Geophys Res Lett 35(17):L17303. https://doi.org/10.1029/2008GL034310

    Article  Google Scholar 

  • Moratto L, Vuan A, Saraò A (2015) A hybrid approach for broadband simulations of strong ground motion: the case of the 2008 Iwate–Miyagi Nairiku earthquake. Bull Seismol Soc Am 105(5):2823–2829. https://doi.org/10.1785/0120150054

    Article  Google Scholar 

  • Motazedian D, Atkinson GM (2005) Stochastic finite-fault modeling based on a dynamic corner frequency. Bull Seismol Soc Am 95(3):995–1010. https://doi.org/10.1785/0120030207

    Article  Google Scholar 

  • Oth A, Bindi D, Parolai S, Wenzel F (2008) S-wave attenuation characteristics beneath the Vrancea region in Romania: new insights from the inversion of ground-motion spectra. Bull Seismol Soc Am 98(5):2482–2497. https://doi.org/10.1785/0120080106

    Article  Google Scholar 

  • Oth A, Bindi D, Parolai S, Di Giacomo D (2011) Spectral analysis of K-NET and KiK-net data in Japan, part II: on attenuation characteristics, source spectra, and site response of borehole and surface stations. Bull Seismol Soc Am 101(2):667–687. https://doi.org/10.1785/0120100135

    Article  Google Scholar 

  • Pankow KL, Pechmann JC (2004) The SEA99 ground-motion predictive relations for extensional tectonic regimes: revisions and a new peak ground velocity relation. Bull Seismol Soc Am 94(1):341–348. https://doi.org/10.1785/0120030010

    Article  Google Scholar 

  • Panza GF, Peresan A, La Mura C (2013) Seismic hazard and strong ground motion: an operational neo-deterministic approach from national to local scale. Geophysics and geochemistry, [Eds. UNESCO-EOLSS joint Committee], Encyclopedia of Life Support Systems (EOLSS), developed under the auspices of the UNESCO, Eolss publishers, Oxford ,UK, [http://www.eolss.net]

  • Pasyanos M, Matzel E, Walter W, Rodgers A (2009) Broad-band Lg attenuation modelling in the Middle East. Geophys J Int 177(3):1166–1176. https://doi.org/10.1111/j.1365-246X.2009.04128.x

    Article  Google Scholar 

  • Rietbrock A, Strasser F, Edwards B (2013) A stochastic earthquake ground-motion prediction model for the United Kingdom. Bull Seismol Soc Am 103:57–77. https://doi.org/10.1785/0120110231.

    Article  Google Scholar 

  • Saragoni GR, Hart GC (1974) Simulation of artificial earthquakes. Earthq Eng Struct Dyn 2:249–268

    Article  Google Scholar 

  • Saudi Building Code SBC-301-2007. Loads and Forces Requirements. Saudi Building Code National Committee

  • Singh NM, Rahman T, Wong IG (2016) A new ground-motion prediction model for northeastern India (NEI) crustal earthquakes. Bull Seismol Soc Am 106:1282–1297. https://doi.org/10.1785/0120150180.

    Article  Google Scholar 

  • Sokolov V (2017) Seismic hazard analysis based on maximum credible earthquakes. Bull Earthq Eng 15(5):1831–1852. https://doi.org/10.1007/s10518-016-0059-5

    Article  Google Scholar 

  • Sokolov V, Wenzel F (2013) Spatial correlation of ground-motions in estimating seismic hazard to civil infrastructure. In: Tesfamariam S, Goda K (eds) Seismic risk analysis and Management of Civil Infrastructure Systems. Woodhead Publishing Ltd, Cambridge, pp 57–78. https://doi.org/10.1533/9780857098986.1.57

    Google Scholar 

  • Sokolov V, Bonjer K-P, Oncescu M, Rizescu M (2005) Hard rock spectral models for intermediate-depth Vrancea, Romania, earthquakes. Bull Seismol Soc Am 95(5):1749–1765. https://doi.org/10.1785/0120050005

    Article  Google Scholar 

  • Sokolov V, Zahran HM, El-Hadidy SY, El-Hadidy M, Alraddi WW (2017) Seismic hazard assessment for Saudi Arabia using spatially smoothed seismicity and analysis of hazard uncertainty. Bull Earthq Eng 15(7):2695–2735. https://doi.org/10.1007/s10518-016-0075-5

    Article  Google Scholar 

  • Sokolov V, Bonjer K-P, Wenzel F, Grecu B, Radulian M (2008) Ground-motion prediction equations for the intermediate depth Vrancea (Romania) earthquakes. Bull Earthq Eng 6(3):367–388. https://doi.org/10.1007/s10518-008-9065-6

    Article  Google Scholar 

  • Strasser FO, Abrahamson NA, Bommer JJ (2009) Sigma: issues, insights and challenges. Seismol Res Lett 80(1):40–56. https://doi.org/10.1785/gssrl.80.1.40

    Article  Google Scholar 

  • Vakov AV (1996) Relationships between earthquake magnitude, source geometry and slip mechanism. Tectonophysics 261(1-3):97–113. https://doi.org/10.1016/0040-1951(96)82672-2

    Article  Google Scholar 

  • Van Houtte C, Drouet S, Cotton F (2011) Analysis of the origins of (kappa) to compute hard rock to rock adjustment factors for GMPEs. Bull Seismol Soc Am 101:2926–2941. https://doi.org/10.1785/0120100345.

    Article  Google Scholar 

  • Yenier E, Atkinson G (2015a) An equivalent point-source model for stochastic simulation of earthquake ground motions in California. Bull Seismol Soc Am 105(3):1435–1455. https://doi.org/10.1785/0120140254

    Article  Google Scholar 

  • Yenier E, Atkinson G (2015b) Regionally adjustable generic ground-motion prediction equation based on equivalent point-source simulations: application to central and eastern North America. Bull Seismol Soc Am 105(4):1989–2009. https://doi.org/10.1785/0120140332

    Article  Google Scholar 

  • Zafarani H, Hassani B (2013). Site response and source spectra of S waves in the Zagros region, Iran. Journal of seismology 17: 645-666, doi: 10.1007:s10950-012-9344-1

  • Zafarani H, Soghrat M (2012) Simulation of ground motion in Zagros region in Iran using the specific barrier model and stochastic method. Bull Seismol Soc Am 102(5):2031–2045. https://doi.org/10.1785/0120110315

    Article  Google Scholar 

  • Zafarani H, Noorzad A, Ansari A, Bargi K (2009). Stochastic modeling of Iranian earthquakes and estimation of ground motion for future earthquakes in greater Tehran. Soil Dynamics and Earthquake Engineering 29: 722-741, doi: 1016/j/soildyn.2008.08.002

  • Zahran HM, El-Hady SM (2017) Seismic hazard assessment for Harrat Lunayyir—a lava field in western Saudi Arabia. Soil Dyn Earthq Eng 200:428–444

    Article  Google Scholar 

  • Zahran HM, Sokolov V, El-Hadidy SY, Alraddi WW (2015) Preliminary probabilistic seismic hazard assessment for the Kingdom of Saudi Arabia based on combined areal source model: Monte Carlo approach and sensitivity analyses. Soil Dyn Earthq Eng 77:453–468. https://doi.org/10.1016/j.soildyn.2015.06.011

    Article  Google Scholar 

  • Zahran HM, Sokolov V, Roobol MJ, Stewart ICF, El-Hadidy SY, El-Hadidy M (2016) On the development of a seismic source zonation model for seismic hazard assessment in western Saudi Arabia. J Seismol 20(3):747–769. https://doi.org/10.1007/s10950-016-9555-y

    Article  Google Scholar 

  • Zhao JX, Zhang J, Asano A, Ohno Y, Oouchi T, Takahashi T, Ogawa H, Irikura K, Thio HK, Somerville PG, Fukushima Y (2006) Attenuation relations of strong ground motion in Japan using site classifications based on predominant period. Bull Seismol Soc Am 96(3):898–913. https://doi.org/10.1785/0120050122

    Article  Google Scholar 

  • Zuccolo E, Vaccari F, Peresan A, Panza GF (2011) Neo-deterministic and probabilistic seismic hazard assessments: a comparison over the Italian territory. Pure Appl Geophys 168(1–2):69–83. https://doi.org/10.1007/s00024-010-0151-8

    Article  Google Scholar 

Download references

Acknowledgements

The work has been performed in the National Center for Earthquakes and Volcanoes, Saudi Geological Survey, Jeddah, Kingdom of Saudi Arabia. The comments of anonymous reviewers are gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vladimir Sokolov.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sokolov, V., Zahran, H.M. Generation of stochastic earthquake ground motion in western Saudi Arabia as a first step in development of regional ground motion prediction model. Arab J Geosci 11, 38 (2018). https://doi.org/10.1007/s12517-018-3394-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12517-018-3394-9

Keywords

Navigation