Skip to main content
Log in

Modelling the Gas Dynamics of Protoplanetary Disks by the SPH Method

  • Published:
Astrophysics Aims and scope

A modification of the GADGET-2 program package is proposed for three-dimensional modelling of gasdynamic flows in protoplanetary disks when perturbing objects (components of a binary system, brown dwarfs, protoplanets) are present. In these systems, the matter in the common disk falls onto the central star and companions to form accretion disks around them. The GADGET-2 code has been supplemented for calculating the accretion rate to each massive object and the line density of matter in the direction toward the central star as functions of the phase of the orbital period. The orbital parameters of the companion are specified as initial conditions for the problem. These orbits can be circular, eccentric, or inclined relative to the plane of the disk. With the aid of the modified code, details in the inner parts of the disk can be calculated with high accuracy: the accretion disks of the star and the companion are identified, as well as the gas bridge between them, flows of matter from the common disk which fill the accretion disks with matter, and density waves in the accretion and common disks.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. H. Tanaka, T. Takeuchi, and W. R. Ward, Astrophys. J. 565, 1257 (2002).

    Article  ADS  Google Scholar 

  2. S.-J. Paardekooper and G. Mellema, Astron. Astrophys. 459, L17 (2006).

    Article  ADS  Google Scholar 

  3. S.-J. Paardekooper and G. Mellema, Astron. Astrophys. 478, 245 (2008).

    Article  ADS  Google Scholar 

  4. P. Cresswell, G. Dirksen, W. Kley, and R. P. Nelson, Astron. Astrophys. 473, 329 (2007).

    Article  ADS  Google Scholar 

  5. B. Bitsch and W. Kley, Astron. Astrophys. 523, A30 (2010).

    Article  ADS  Google Scholar 

  6. J. C. B. Papaloizou, R. P. Nelson, and F. Masset, Astron. Astrophys. 366, 263 (2001).

    Article  ADS  Google Scholar 

  7. P. Goldreich and R. Sari, Astrophys. J. 585, 1024 (2003).

    Article  ADS  Google Scholar 

  8. F. Marzari and A. F. Nelson, Astrophys. J. 705, 1575 (2009).

    Article  ADS  Google Scholar 

  9. B. Bitsch and W. Kley, Astron. Astrophys. 530, A41 (2011).

    Article  ADS  Google Scholar 

  10. M. Xiang-Gruess and J. C. B. Papaloizou, Mon. Not. Roy. Astron. Soc. 431, 1320 (2013).

    Article  ADS  Google Scholar 

  11. C. Terquem and A. Ajmia, Mon. Not. Roy. Astron. Soc. 404, 409 (2010).

    ADS  Google Scholar 

  12. C. J. Burrows, J. E. Krist, and K. R. Stapelfeldt, WFPC2 Investigation Definition Team, Bull. Am. Astron. Soc. 27, 1329 (1995).

    ADS  Google Scholar 

  13. J. S. Greaves, W. S. Holland, G. Moriarty-Schieven, et al., Astrophys. J. Lett. 506, L133 (1998).

    Article  ADS  Google Scholar 

  14. S. R. Heap, D. J. Lindler, Th. M. Lanz, et al., Astrophys. J. 539, 435 (2000).

    Article  ADS  Google Scholar 

  15. C. A. Grady, E. F. Polomski, T. Henning, et al., Astrophys. J. 122, 3396 (2001).

    Google Scholar 

  16. J. Hashimoto, M. Tamura, T. Muto, et al., Astrophys. J. Lett. 729, L17 (2011).

    Article  ADS  Google Scholar 

  17. G. S. Mathews, J. P. Williams, and F. Menard, Astrophys. J. 753, 59 (2012).

    Article  ADS  Google Scholar 

  18. S. Mayama, J. Hashimoto, T. Muto, et al., Astrophys. J. Lett. 760, L26 (2012).

    Article  ADS  Google Scholar 

  19. V. Christiaens, S. Casassus, S. Perez, et al., Astrophys. J. Lett. 785, L12 (2014).

    Article  ADS  Google Scholar 

  20. S. Takakuwa, M. Saito, T. K. Saigo, et al., Astrophys. J. 796, 1 (2014).

    Article  ADS  Google Scholar 

  21. R. Gunther and W. Kley, Astron. Astrophys. 387, 550 (2002).

    Article  ADS  Google Scholar 

  22. Y. Ochi, K. Sugimoto, T. Hanawa, et al., Astrophys. J. 623, 922 (2005).

    Article  ADS  Google Scholar 

  23. P. V. Kaigorodov, D. B. Bisikalo, A. M. Fateeva, and P. Yu. Sytov, Astron. Rep. 54, 1078 (2010).

    Article  ADS  Google Scholar 

  24. M. M. Fragner and R. P. Nelson, Astron. Astrophys. 511, A77 (2010).

    Article  ADS  Google Scholar 

  25. T. Hanawa, Y. Ochi, and K. Ando, Astrophys. J. 708, 485 (2010).

    Article  ADS  Google Scholar 

  26. W. Kley and R. P. Nelson, Ann. Rev. Astron. Astrophys. 50, 211 (2012).

    Article  ADS  Google Scholar 

  27. P. Artymowicz and S. H. Lubow, Astrophys. J. 467, L77 (1996).

    Article  ADS  Google Scholar 

  28. M. R. Bate and I. A. Bonnell, Mon. Not. Roy. Astron. Soc. 285, 33 (1997).

    Article  ADS  Google Scholar 

  29. L. D. Larwood and J. C. P. Papaloizou, Mon. Not. Roy. Astron. Soc. 285, 288 (1997).

    Article  ADS  Google Scholar 

  30. M. de Val-Borro, R. G. Edgar, P. Artymowicz, et al., Mon. Not. Roy. Astron. Soc. 370, 529 (2006).

    Article  ADS  Google Scholar 

  31. N. Ya. Sotnikova and V. P. Grinin, Astron. Lett. 33, 594 (2007).

  32. G. Picogna and F. Marzari, Astron. Astrophys. 556, A148 (2013).

    Article  ADS  Google Scholar 

  33. V. P. Grinin, T. V. Demidva, and N. Ya. Sotnikova, Astron. Lett. 36, 808 (2010).

    Article  ADS  Google Scholar 

  34. G. Picogna and F. Marzari, Astron. Astrophys. 583, A133 (2015).

    Article  ADS  Google Scholar 

  35. S. V. Pilipenko, A. G. Doroshkevich, V. N. Lukas, and E. V. Mikheeva, Mon. Not. Roy. Astron. Soc. 427, L30 (2012).

    ADS  Google Scholar 

  36. A. Cloet-Osselaer, S. De Rijcke, B. Vandenbroucke, et al., Mon. Not. Roy. Astron. Soc. 442, 2909 (2014).

    Article  ADS  Google Scholar 

  37. B. W. Keller, J. Wadsley, and H. M. P. Couchman, Mon. Not. Roy. Astron. Soc. 453, 3499 (2015).

    Article  ADS  Google Scholar 

  38. M. Schaller, C. D. Vecchia, J. Schaye, et al., Mon. Not. Roy. Astron. Soc. 454, 2277 (2015).

    Article  ADS  Google Scholar 

  39. F. G. Goicovic, J. Cuadra, A. Sesana, et al., Mon. Not. Roy. Astron. Soc. 455 (1989 (2016).

  40. N. Ya. Sotnikova, Astrophysics 39, 141 (1996).

    Article  ADS  Google Scholar 

  41. V. P. Reshetnikov and N. Ya. Sotnikova, Astron. Astrophys. 325, 933 (1997).

  42. N. Moeckel and C. J. Clarke, Mon. Not. Roy. Astron. Soc. 415, 1187 (2011).

    Article  Google Scholar 

  43. R. J. Parker, J. E. Dale, and B. Ercolano, Mon. Not. Roy. Astron. Soc. 446, 4278 (2015).

    Article  ADS  Google Scholar 

  44. J. Dutta, Astron. Astrophys. 585, A59 (2016).

    Article  ADS  Google Scholar 

  45. T. I. Madura, T. R. Gull, A. T. Okazaki, et al., Mon. Not. Roy. Astron. Soc. 436, 3820 (2013).

    Article  ADS  Google Scholar 

  46. M. Kubryk, N. Prantzos, and E. Athanassoula, Astron. Astrophys. 580, A126 (2015).

    Article  ADS  Google Scholar 

  47. P. Lorén-Aguilar and M. R. Bate, Mon. Not. Roy. Astron. Soc. 443, 927 (2014).

    Article  ADS  Google Scholar 

  48. P. Lorén-Aguilar and M. R. Bate, Mon. Not. Roy. Astron. Soc. 454, 4114 (2015).

    Article  ADS  Google Scholar 

  49. T. V. Demidova, N. Ya. Sotnikova, and V. P. Grinin, Astron. Lett. 36, 422 (2010).

  50. T. V. Demidova, N. Ya. Sotnikova, and V. P. Grinin, Astron. Lett. 36, 498 (2010).

  51. L. B. Lucy, Astron. J. 82, 1013 (1977).

    Article  ADS  Google Scholar 

  52. R. A. Gingold and J. J. Monaghan, Mon. Not. Roy. Astron. Soc. 181, 375 (1977).

    Article  ADS  Google Scholar 

  53. V. Springel, N. Yoshida, and S. D. M. White, New Astronomy 6, 51 (2001).

    Article  Google Scholar 

  54. V. Springel, Mon. Not. Roy. Astron. Soc. 364, 1105 (2005).

    Article  ADS  Google Scholar 

  55. J. J. Monaghan, J. Comput. Phys. 60, 253 (1985).

    Article  ADS  MathSciNet  Google Scholar 

  56. R. A. Gingold and J. J. Monaghan, J. Comput. Phys. 46, 429 (1982).

    Article  ADS  MathSciNet  Google Scholar 

  57. J. J. Monaghan, Rep. Prog. Phys. 68, 1703 (2005).

    Article  ADS  MathSciNet  Google Scholar 

  58. J. J. Monaghan, Ann. Rev. Astron. Astrophys. 30, 543 (1992).

    Article  ADS  Google Scholar 

  59. L. Verlet, Phys. Review 159, 98 (1967).

    Article  ADS  Google Scholar 

  60. L. Hernquist and N. Katz, Astrophys. J. Suppl 70, 419 (1989).

    Article  ADS  Google Scholar 

  61. P. P. Eggleton, Astrophys. J. 268, 368 (1983).

    Article  ADS  Google Scholar 

  62. S. Mayama, M. Tamura, T. Hanawa, et al., Science 327, 306 (2010).

    Article  ADS  Google Scholar 

  63. A. M. Fateeva, D. V. Bisikalo, P. V. Kaygorodov, and A. Y. Sytov, Astrophys. Space Sci. 335, 125 (2011).

    Article  ADS  Google Scholar 

  64. A. F. Nelson, Astrophys. J. Lett. 537, L65 (2000).

    Article  ADS  Google Scholar 

  65. W. Kley and R. P. Nelson, Astron. Astrophys. 486, 617 (2008).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to T. V. Demidova.

Additional information

Translated from Astrofizika, Vol. 59, No. 4, pp. 505-517 (November 2016).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Demidova, T.V. Modelling the Gas Dynamics of Protoplanetary Disks by the SPH Method. Astrophysics 59, 449–460 (2016). https://doi.org/10.1007/s10511-016-9448-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10511-016-9448-3

Keywords

Navigation