Skip to main content

Advertisement

Log in

Mycobacterium tuberculosis PE13 (Rv1195) manipulates the host cell fate via p38-ERK-NF-κB axis and apoptosis

  • Published:
Apoptosis Aims and scope Submit manuscript

Abstract

PE/PPE family proteins are mycobacteria unique molecules, named after their N-terminal conserved PE (Pro-Glu) and PPE (Pro-Pro-Glu) domains. Mycobacterium tuberculosis (Mtb) PE family gene encoded cell surface proteins are previously reported to be involved in virulence and interaction with host. To explore the role of a novel PE member (PE13, Rv1195), M. smegmatis was used as surrogate host. The study showed that Rv1195 was a cell wall associated protein. Rv1195 can enhance the survival of recombinants under stress conditions such as H2O2, SDS, low pH. This is largely due to the upregulated transcription of Rv1195, since diverse stresses can increase the promoter activity of Rv1195 gene, consistent with enhanced survival within macrophages. Ms_Rv1195 infection also increased the production of interlukin-6 (IL-6) and IL-1β from macrophages, while decreased the secretion of suppressor of cytokine signaling 3 (SOCS3) in comparison with the vector-only control. The cell death was also precipitated by the Ms_Rv1195 infection. Inhibitors treatment showed that the p38-ERK-NF-κB axis was involved in the Rv1195 triggered change of IL-6 and IL-1β expression. In summary, we showed that PE13 (Rv1195) is a new PE family member actively engaged in the interaction between Mycobacterium and host, signaling through p38-ERK-NF-κB axis and apoptosis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. Deng W, Xie J (2012) Ins and outs of Mycobacterium tuberculosis PPE family in pathogenesis and implications for novel measures against tuberculosis. J Cell Biochem 113(4):1087–1095

    Article  CAS  PubMed  Google Scholar 

  2. Brennan MJ, Delogu G (2002) The PE multigene family: a ‘molecular mantra’ for mycobacteria. Trends Microbiol 10(5):246–249

    Article  CAS  PubMed  Google Scholar 

  3. Bottai D, Brosch R (2009) Mycobacterial PE, PPE and ESX clusters: novel insights into the secretion of these most unusual protein families. Mol Microbiol 73(3):325–328

    Article  CAS  PubMed  Google Scholar 

  4. Dheenadhayalan V, Delogu G, Brennan MJ (2006) Expression of the PE_PGRS 33 protein in Mycobacterium smegmatis triggers necrosis in macrophages and enhanced mycobacterial survival. Microbes Infect 8(1):262–272

    Article  CAS  PubMed  Google Scholar 

  5. Delogu G et al (2004) Rv1818c-encoded PE_PGRS protein of Mycobacterium tuberculosis is surface exposed and influences bacterial cell structure. Mol Microbiol 52(3):725–733

    Article  CAS  PubMed  Google Scholar 

  6. Abdallah AM et al (2009) PPE and PE_PGRS proteins of Mycobacterium marinum are transported via the type VII secretion system ESX-5. Mol Microbiol 73(3):329–340

    Article  CAS  PubMed  Google Scholar 

  7. Gordon BR et al (2010) Lsr2 is a nucleoid-associated protein that targets AT-rich sequences and virulence genes in Mycobacterium tuberculosis. Proc Natl Acad Sci USA 107(11):5154–5159

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Dahl JL et al (2003) The role of RelMtb-mediated adaptation to stationary phase in long-term persistence of Mycobacterium tuberculosis in mice. Proc Natl Acad Sci U S A 100(17):10026–10031

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Voskuil MI et al (2004) Regulation of the Mycobacterium tuberculosis PE/PPE genes. Tuberculosis 84(3–4):256–262

    Article  CAS  PubMed  Google Scholar 

  10. Brennan MJ et al (2001) Evidence that mycobacterial PE_PGRS proteins are cell surface constituents that influence interactions with other cells. Infect Immun 69(12):7326–7333

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Tundup S et al (2006) Clusters of PE and PPE genes of Mycobacterium tuberculosis are organized in operons: evidence that PE Rv2431c is co-transcribed with PPE Rv2430c and their gene products interact with each other. FEBS Lett 580(5):1285–1293

    Article  CAS  PubMed  Google Scholar 

  12. Chatrath S et al (2011) The Rv1651c-encoded PE-PGRS30 protein expressed in Mycobacterium smegmatis exhibits polar localization and modulates its growth profile. FEMS Microbiol Lett 322(2):194–199

    Article  CAS  PubMed  Google Scholar 

  13. Goldstone RM et al (2009) The transcriptional regulator Rv0485 modulates the expression of a pe and ppe gene pair and is required for Mycobacterium tuberculosis virulence. Infect Immun 77(10):4654–4667

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Dillon DC et al (1999) Molecular characterization and human T-cell responses to a member of a novel Mycobacterium tuberculosis mtb39 gene family. Infect Immun 67(6):2941–2950

    CAS  PubMed  PubMed Central  Google Scholar 

  15. Sundaramurthi JC et al (2012) In silico identification of potential antigenic proteins and promiscuous CTL epitopes in Mycobacterium tuberculosis. Infect Genet Evol 12(6):1312–1318

    Article  CAS  PubMed  Google Scholar 

  16. Betts JC et al (2002) Evaluation of a nutrient starvation model of Mycobacterium tuberculosis persistence by gene and protein expression profiling. Mol Microbiol 43(3):717–731

    Article  CAS  PubMed  Google Scholar 

  17. Dong D et al (2012) PPE38 modulates the innate immune response and is required for Mycobacterium marinum virulence. Infect Immun 80(1):43–54

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Daim S et al (2011) Expression of the Mycobacterium tuberculosis PPE37 protein in Mycobacterium smegmatis induces low tumour necrosis factor alpha and interleukin 6 production in murine macrophages. J Med Microbiol 60(Pt 5):582–591

    Article  CAS  PubMed  Google Scholar 

  19. Kang K et al (2011) Metergoline-induced cell death in Candida krusei. Fungal Biol 115(3):302–309

    Article  CAS  PubMed  Google Scholar 

  20. Wang X et al (2012) JAK/STAT pathway plays a critical role in the proinflammatory gene expression and apoptosis of RAW264.7 cells induced by trichothecenes as DON and T-2 toxin. Toxicol Sci 127(2):412–424

    Article  CAS  PubMed  Google Scholar 

  21. Pandey AK et al (2009) Nitrile-inducible gene expression in mycobacteria. Tuberculosis 89(1):12–16

    Article  CAS  PubMed  Google Scholar 

  22. Mitchell SF, Lorsch JR (2014) Standard in vitro assays for protein-nucleic acid interactions–gel shift assays for RNA and DNA binding. Methods Enzymol 541:179–196

    Article  CAS  PubMed  Google Scholar 

  23. Stover CK et al (1991) New use of BCG for recombinant vaccines. Nature 351(6326):456–460

    Article  CAS  PubMed  Google Scholar 

  24. Abdallah AM et al (2006) A specific secretion system mediates PPE41 transport in pathogenic mycobacteria. Mol Microbiol 62(3):667–679

    Article  CAS  PubMed  Google Scholar 

  25. Li W et al (2014) Mycobacterium tuberculosis Rv3402c enhances mycobacterial survival within macrophages and modulates the host pro-inflammatory cytokines production via NF-kappa B/ERK/p38 signaling. PLoS ONE 9(4):e94418

    Article  PubMed  PubMed Central  Google Scholar 

  26. Bonanni D et al (2005) Immunogenicity of mycobacterial PPE44 (Rv2770c) in Mycobacterium bovis BCG-infected mice. J Med Microbiol 54(Pt 5):443–448

    Article  CAS  PubMed  Google Scholar 

  27. Chen Y et al (2014) Dill (Anethum graveolens L.) seed essential oil induces Candida albicans apoptosis in a metacaspase-dependent manner. Fungal Biol 118(4):394–401

    Article  CAS  PubMed  Google Scholar 

  28. Sturgill-Koszycki S et al (1994) Lack of acidification in Mycobacterium phagosomes produced by exclusion of the vesicular proton-ATPase. Science 263(5147):678–681

    Article  CAS  PubMed  Google Scholar 

  29. Tian C, Jian-Ping X (2010) Roles of PE_PGRS family in Mycobacterium tuberculosis pathogenesis and novel measures against tuberculosis. Microb Pathog 49(6):311–314

    Article  PubMed  Google Scholar 

  30. Su H et al (2015) PPE26 induces TLR2-dependent activation of macrophages and drives Th1-type T-cell immunity by triggering the cross-talk of multiple pathways involved in the host response. Oncotarget 6(36):38517–38537

    PubMed  PubMed Central  Google Scholar 

  31. Bai X et al (2015) Caspase-3-independent apoptotic pathways contribute to interleukin-32gamma-mediated control of Mycobacterium tuberculosis infection in THP-1 cells. BMC Microbiol 15:39

    Article  PubMed  PubMed Central  Google Scholar 

  32. Leemans JC et al (2005) Macrophages play a dual role during pulmonary tuberculosis in mice. J Infect Dis 191(1):65–74

    Article  PubMed  Google Scholar 

  33. Flynn JL, Chan J (2003) Immune evasion by Mycobacterium tuberculosis: living with the enemy. Curr Opin Immunol 15(4):450–455

    Article  CAS  PubMed  Google Scholar 

  34. Ashenafi S et al (2014) Progression of clinical tuberculosis is associated with a Th2 immune response signature in combination with elevated levels of SOCS3. Clin Immunol 151(2):84–99

    Article  CAS  PubMed  Google Scholar 

  35. Larsen L, Ropke C (2002) Suppressors of cytokine signalling: SOCS. APMIS 110(12):833–844

    Article  CAS  PubMed  Google Scholar 

  36. Zhang Z et al (2009) Suppressor of cytokine signaling 3 promotes bone marrow cells to differentiate into CD8 + T lymphocytes in lung tissue via up-regulating Notch1 expression. Cancer Res 69(4):1578–1586

    Article  CAS  PubMed  Google Scholar 

  37. Rottenberg ME, Carow B (2014) SOCS3 and STAT3, major controllers of the outcome of infection with Mycobacterium tuberculosis. Semin Immunol 26(6):518–532

    Article  CAS  PubMed  Google Scholar 

  38. Nagabhushanam V et al (2003) Innate inhibition of adaptive immunity: Mycobacterium tuberculosis-induced IL-6 inhibits macrophage responses to IFN-gamma. J Immunol 171(9):4750–4757

    Article  CAS  PubMed  Google Scholar 

  39. Saunders BM et al (2000) Interleukin-6 induces early gamma interferon production in the infected lung but is not required for generation of specific immunity to Mycobacterium tuberculosis infection. Infect Immun 68(6):3322–3326

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Huang Y et al (2010) Expression of PE_PGRS 62 protein in Mycobacterium smegmatis decrease mRNA expression of proinflammatory cytokines IL-1beta, IL-6 in macrophages. Mol Cell Biochem 340(1–2):223–229

    Article  CAS  PubMed  Google Scholar 

  41. Master SS et al (2008) Mycobacterium tuberculosis prevents inflammasome activation. Cell Host Microbe 3(4):224–232

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Behar SM et al (2011) Apoptosis is an innate defense function of macrophages against Mycobacterium tuberculosis. Mucosal Immunol 4(3):279–287

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Banga S et al (2007) Legionella pneumophila inhibits macrophage apoptosis by targeting pro-death members of the Bcl2 protein family. Proc Natl Acad Sci USA 104(12):5121–5126

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Aguilo JI et al (2013) ESX-1-induced apoptosis is involved in cell-to-cell spread of Mycobacterium tuberculosis. Cell Microbiol 15(12):1994–2005

    Article  CAS  PubMed  Google Scholar 

  45. Sakata N et al (1995) Selective activation of c-Jun kinase mitogen-activated protein kinase by CD40 on human B cells. J Biol Chem 270(51):30823–30828

    Article  CAS  PubMed  Google Scholar 

  46. Xia Z et al (1995) Opposing effects of ERK and JNK-p38 MAP kinases on apoptosis. Science 270(5240):1326–1331

    Article  CAS  PubMed  Google Scholar 

  47. Reiling N et al (2001) Mycobacteria-induced TNF-alpha and IL-10 formation by human macrophages is differentially regulated at the level of mitogen-activated protein kinase activity. J Immunol 167(6):3339–3345

    Article  CAS  PubMed  Google Scholar 

  48. Fallahi-Sichani M, Kirschner DE, Linderman JJ (2012) NF-kappaB signaling dynamics play a key role in infection control in tuberculosis. Front Physiol 3:170

    Article  PubMed  PubMed Central  Google Scholar 

  49. Frydrych I, Mlejnek P (2008) Serine protease inhibitors N-alpha-tosyl-L-lysinyl-chloromethylketone (TLCK) and N-tosyl-L-phenylalaninyl-chloromethylketone (TPCK) are potent inhibitors of activated caspase proteases. J Cell Biochem 103(5):1646–1656

    Article  CAS  PubMed  Google Scholar 

  50. Gillibert M et al (2005) Another biological effect of tosylphenylalanylchloromethane (TPCK): it prevents p47phox phosphorylation and translocation upon neutrophil stimulation. Biochem J 386(Pt 3):549–556

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

This work was supported by National Natural Science Foundation [Grant Numbers 81371851, 81511120001, 81071316, 81271882, 81301394], New Century Excellent Talents in Universities [Grant Number NCET110703], National Megaprojects for Key Infectious Diseases [Grant Numbers 2008ZX10003006], Excellent Ph.D. thesis fellowship of Southwest University [Grant Numbers kb2010017, ky2011003], the Fundamental Research Funds for the Central Universities [Grant Numbers XDJK2011D006, XDJK2012D011, XDJK2012D007, XDJK2013D003, XDJK2014D040, XDJK2016D025], Graduate research and innovation project of graduate in Chongqing (CYS14044).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jianping Xie.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Hui Li and Qiming Li have contributed equally to this work.

Electronic supplementary material

Below is the link to the electronic supplementary material.

10495_2016_1249_MOESM1_ESM.tif

Supplementary material 1 Supplement Fig. 1 The fatty acid relative content of Ms_Rv1195 and Ms_pNIT. The fatty acid relative content of recombinant M. smegmatis-pNIT-Rv1195 strain has no difference relative to M. smegmatis-pNIT. (TIFF 591 kb)

10495_2016_1249_MOESM2_ESM.tif

Supplementary material 2 Supplement Fig. 2 Growth of Ms_Rv1195 and Ms_pNIT under different antibiotics exposure. (A) (B) (C) (D).Ten-fold serial dilutions of Ms_Rv1195 and Ms_pNIT were spotted on Middlebrook 7H9 broth containing indicated concentration of Capreomycin, Norfloxacin, Isoniazid, Vancomycin. Then the result was recorded when incubated at 37 °C for 3 days.(TIFF 1144 kb)

10495_2016_1249_MOESM3_ESM.tif

Supplementary material 3 Supplement Fig. 3 Rv1195 regulates the transcription of BNIP3, Bcl-rambo, TNF-α in infected macrophages. Total RNA was purified and subjected to quantitative RT-PCR analysis for assessment of BNIP3, Bcl-rambo, TNF-α. (A) (B) (C). Data are shown as means ± SD of triplicate wells. Similar results were generated by three independent experiments (*p < 0.05; **p < 0.01; ***p < 0.001). (TIFF 620 kb)

Supplementary material 4 (DOC 30 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, H., Li, Q., Yu, Z. et al. Mycobacterium tuberculosis PE13 (Rv1195) manipulates the host cell fate via p38-ERK-NF-κB axis and apoptosis. Apoptosis 21, 795–808 (2016). https://doi.org/10.1007/s10495-016-1249-y

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10495-016-1249-y

Keywords

Navigation