Skip to main content
Log in

Teriflunomide encourages cytostatic and apoptotic effects in premalignant and malignant cutaneous keratinocytes

  • Original Paper
  • Published:
Apoptosis Aims and scope Submit manuscript

Abstract

Teriflunomide (TFN) reportedly inhibits de novo pyrimidine synthesis and exhibits anti-inflammatory, disease-modifying activities in vivo. These qualities would suggest that TFN could be useful in skin cancer chemoprevention or therapy. We investigated some mechanistic aspects of this tenet by characterizing the effects of TFN on premalignant and malignant human cutaneous keratinocytes. TFN promoted a dose- and/or time-dependent cytostasis and in these cells, which was followed by apoptosis. These features occurred in the presence of a physiological concentration of uridine in the culture medium. The short-term S phase arrest triggered by TFN was reversible in the malignant keratinocytes, and the indirect apoptosis induction was apparently preceded by mitochondrial disruption and reactive oxygen species production in both the premalignant and malignant keratinocytes. Respiration deficient malignant keratinocytes were resistant to the acute cytostatic and latent apoptotic effects of TFN implicating de novo pyrimidine synthesis and mitochondrial bioenergetics as the primary targets for TFN in the respiring cells. These novel mechanistic findings support a role for TFN in skin cancer chemoprevention and therapy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Abbreviations

DHODH:

Dihydroorotate dehydrogenase

DCF:

Dichlorofluorescein

DiOC6(3):

3,3′-dihexyloxacarbocyanine iodide

FBS:

Fetal bovine serum

KRB:

Krebs-Ringer buffer

Me2SO:

Dimethyl sulfoxide

∆Ψm :

Mitochondrial inner transmembrane potential

mtDNA:

Mitochondrial DNA

PI:

Propidium iodide

ρ0 :

Respiration-deficient cells lacking mtDNA

ROS:

Reactive oxygen species

SCC:

Squamous cell carcinoma

TFN:

Teriflunomide

References

  1. Hail N Jr, Lotan R (2004) Apoptosis induction by the natural product cancer chemopreventive agent deguelin is mediated through the inhibition of mitochondrial respiration. Apoptosis 9:437–447

    Article  CAS  PubMed  Google Scholar 

  2. Evans DR, Guy HI (2004) Mammalian pyrimidine biosynthesis: fresh insights into an ancient pathway. J Biol Chem 279:33035–33038

    Article  CAS  PubMed  Google Scholar 

  3. Davis JP, Cain GA, Pitts WJ, Magolda RL, Copeland RA (1996) The immunosuppressive metabolite of leflunomide is a potent inhibitor of human dihydroorotate dehydrogenase. Biochemistry 35:1270–1273

    Article  CAS  PubMed  Google Scholar 

  4. Jöckel J, Wendt B, Löffler M (1998) Structural and functional comparison of agents interfering with dihydroorotate, succinate and NADH oxidation of rat liver mitochondria. Biochem Pharmacol 56:1053–1060

    Article  PubMed  Google Scholar 

  5. Tallantyre E, Evangelou N, Constantinescu CS (2008) Spotlight on teriflunomide. Int MS J 15:62–68

    CAS  PubMed  Google Scholar 

  6. Breedveld FC, Dayer JM (2000) Leflunomide: mode of action in the treatment of rheumatoid arthritis. Ann Rheum Dis 59:841–849

    Article  CAS  PubMed  Google Scholar 

  7. Clark LC, Combs GF Jr, Turnbull BW et al (1996) Effects of selenium supplementation for cancer prevention in patients with carcinoma of the skin. A randomized controlled trial. Nutritional prevention of cancer study group. JAMA 276:1957–1963

    Article  CAS  PubMed  Google Scholar 

  8. Einspahr JG, Stratton SP, Bowden GT, Alberts DS (2002) Chemoprevention of human skin cancer. Crit Rev Oncol Hematol 41:269–285

    Article  PubMed  Google Scholar 

  9. Boukamp P, Popp S, Bleuel K, Tomakidi E, Bürkle A, Fusenig NE (1999) Tumorigenic conversion of immortal human skin keratinocytes (HaCaT) by elevated temperature. Oncogene 18:5638–5645

    Article  CAS  PubMed  Google Scholar 

  10. Hail N Jr, Lotan R (2001) The synthetic retinoid CD437 promotes rapid apoptosis in malignant human epidermal keratinocytes and G1 arrest in their normal counterparts. J Cell Physiol 186:24–34

    Article  CAS  PubMed  Google Scholar 

  11. Hail N Jr, Lotan R (2001) Mitochondrial respiration is uniquely associated with the prooxidant and apoptotic effects of N-(4-hydroxyphenyl)retinamide. J Biol Chem 276:45614–45621

    Article  CAS  PubMed  Google Scholar 

  12. Hail N Jr, Chen P, Kepa JJ (2009) Selective apoptosis induction by the cancer chemopreventive agent N-(4-hydroxyphenyl)retinamide is achieved by modulating mitochondrial bioenergetics in premalignant and malignant human prostate epithelial cells. Apoptosis 14:449–863

    Article  Google Scholar 

  13. Traut TW (1994) Physiological concentrations of purines and pyrimidines. Mol Cell Biochem 140:1–22

    Article  CAS  PubMed  Google Scholar 

  14. Moyer JD, Oliver JT, Handschumacher RE (1981) Salvage of circulating pyrimidine nucleosides in the rat. Cancer Res 41:3010–3017

    CAS  PubMed  Google Scholar 

  15. Lecca D, Ceruti S (2008) Uracil nucleotides: from metabolic intermediates to neuroprotection and neuroinflammation. Biochem Pharmacol 75:1869–1881

    Article  CAS  PubMed  Google Scholar 

  16. Löffler M, Becker C, Wegerle E, Schuster G (1996) Catalytic enzyme histochemistry and biochemical analysis of dihydroorotate dehydrogenase/oxidase and succinate dehydrogenase in mammalian tissues, cells and mitochondria. Histochem Cell Biol 105:119–128

    Article  PubMed  Google Scholar 

  17. Baumann P, Mandl-Weber S, Volkl A et al (2009) Dihydroorotate dehydrogenase inhibitor A771726 (leflunomide) induces apoptosis and diminishes proliferation of multiple myeloma cells. Mol Cancer Ther 8:366–375

    Article  CAS  PubMed  Google Scholar 

  18. Rückemann K, Fairbanks LD, Carrey EA et al (1998) Leflunomide inhibits pyrimidine de novo synthesis in mitogen-stimulated T-lymphocytes from healthy humans. J Biol Chem 273:21682–21691

    Article  PubMed  Google Scholar 

  19. Shawver LK, Schwartz DP, Mann E et al (1997) Inhibition of platelet-derived growth factor-mediated signal transduction and tumor growth by N-[4-(trifluoromethyl)-phenyl]5-methylisoxazole-4-carboxamide. Clin Cancer Res 3:1167–1177

    CAS  PubMed  Google Scholar 

  20. Ringshausen I, Oelsner M, Bogner C, Peschel C, Decker T (2008) The immunomodulatory drug Leflunomide inhibits cell cycle progression of B-CLL cells. Leukemia 22:635–638

    Article  CAS  PubMed  Google Scholar 

  21. Sawamukai N, Saito K, Yamaoka K, Nakayamada S, Ra C, Tanaka Y (2007) Leflunomide inhibits PDK1/Akt pathway and induces apoptosis of human mast cells. J Immunol 179:6479–6484

    CAS  PubMed  Google Scholar 

  22. Xu X, Williams JW, Gong H, Finnegan A, Chong AS (1996) Two activities of the immunosuppressive metabolite of leflunomide, A77 1726. Inhibition of pyrimidine nucleotide synthesis and protein tyrosine phosphorylation. Biochem Pharmacol 52:527–534

    Article  CAS  PubMed  Google Scholar 

  23. Sirri V, Urcuqui-Inchima S, Roussel P, Hernandez-Verdun D (2008) Nucleolus: the fascinating nuclear body. Histochem Cell Biol 129:13–31

    Article  CAS  PubMed  Google Scholar 

  24. Montanaro L, Trere D, Derenzini M (2008) Nucleolus, ribosomes, and cancer. Am J Pathol 173:301–310

    Article  CAS  PubMed  Google Scholar 

  25. Hail N Jr (2005) Mitochondria: a novel target for the chemoprevention of cancer. Apoptosis 10:687–705

    Article  CAS  PubMed  Google Scholar 

  26. Hail N Jr, Lotan R (2002) Examining the role of mitochondrial respiration in vanilloid-induced apoptosis. J Natl Cancer Inst 94:1281–1292

    CAS  PubMed  Google Scholar 

  27. Fontaine E, Ichas F, Bernardi P (1998) A ubiquinone-binding site regulates the Mitochondrial permeability transition pore. J Biol Chem 273:25734–25740

    Article  CAS  PubMed  Google Scholar 

  28. Hail N Jr (2008) Mitochondrial reactive oxygen species affect sensitivity to curcumin-induced apoptosis. Free Radic Biol Med 44:1382–1393

    Article  PubMed  Google Scholar 

  29. Pletjushkina OY, Lyamzaev KG, Popova EN et al (2006) Effect of oxidative stress on dynamics of mitochondrial reticulum. Biochim Biophys Acta 1757:518–524

    Article  CAS  PubMed  Google Scholar 

  30. Bickers DR, Athar M (2006) Oxidative stress in the pathogenesis of skin disease. J Invest Dermatol 126:2565–2575

    Article  CAS  PubMed  Google Scholar 

  31. Guzman E, Langowski JL, Owen-Schaub L (2002) Mad dogs, Englishmen and apoptosis: the role of cell death in UV-induced skin cancer. Apoptosis 8:315–325

    Article  Google Scholar 

  32. Boukamp P (2005) UV-induced skin cancer: similarities–variations. J Dtsch Dermatol Ges 3:493–505

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by funds provided by the University of Colorado Denver School of Pharmacy. We thank Christine Childs with the University of Colorado Cancer Center Flow Cytometry Core for her assistance with the acquisition of the flow cytometry data presented in this study.

Conflict of interest

The authors declare that they have no conflict of interest regarding the research presented in this publication.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Numsen Hail Jr..

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hail, N., Chen, P., Rower, J. et al. Teriflunomide encourages cytostatic and apoptotic effects in premalignant and malignant cutaneous keratinocytes. Apoptosis 15, 1234–1246 (2010). https://doi.org/10.1007/s10495-010-0518-4

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10495-010-0518-4

Keywords

Navigation