Skip to main content
Log in

Selective apoptosis induction by the cancer chemopreventive agent N-(4-hydroxyphenyl)retinamide is achieved by modulating mitochondrial bioenergetics in premalignant and malignant human prostate epithelial cells

  • Original paper
  • Published:
Apoptosis Aims and scope Submit manuscript

Abstract

Prostate tumorigenesis is coupled with an early metabolic switch in transformed prostate epithelial cells that effectively increases their mitochondrial bioenergetic capacity. The synthetic retinoid N-(4-hydroxyphenyl)retinamide (4HPR) inhibits prostate cancer development in vivo, and triggers reactive oxygen species (ROS)-dependent prostate cancer cell apoptosis in vitro. The possibility that 4HPR-induced ROS production is associated with mitochondrial bioenergetics and required for apoptosis induction in transformed prostate epithelial cells in vitro would advocate a prospective mechanistic basis for 4HPR-mediated prostate cancer chemoprevention in vivo. We investigated this tenet by comparing and contrasting 4HPR’s effects on premalignant PWR-1E and malignant DU-145 human prostate epithelial cells. 4HPR promoted a dose- and/or time-dependent apoptosis induction in PWR-1E and DU-145 cells, which was preceded by and dependent on an increase in mitochondrial ROS production. In this regard, the PWR-1E cells were more sensitive than the DU-145 cells, and they consumed roughly twice as much oxygen as the DU-145 cells suggesting oxidative phosphorylation was higher in the premalignant cells. Interestingly, increasing the [Ca2+] in the culture medium of the PWR-1E cells attenuated their proliferation as well as their mitochondrial bioenergetic capacity and 4HPR’s cytotoxic effects. Correspondingly, the respiration-deficient derivatives (i.e., ρ0 cells lacking mitochondrial DNA) of DU-145 cells were markedly resistant to 4HPR-induced ROS production and apoptosis. Together, these observations implied that the reduction of mitochondrial bioenergetics protected PWR-1E and DU-145 cells against the cytotoxic effects of 4HPR, and support the concept that oxidative phosphorylation is an essential determinant in 4HPR’s apoptogenic signaling in transformed human prostate epithelial cells.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Abbreviations

4HPR:

N-(4-Hydroxyphenyl)retinamide

DCF:

2′,7′-Dichlorofluorescein

ΔΨm :

Mitochondrial inner transmembrane potential

DiOC6(3):

3,3′-Dihexyloxacarbocyanine iodide

EthBr:

Ethidium bromide

FITC:

Fluorescein isothiocyanate

HQNO:

2-Heptyl-4-hydroxyquinoline-N-oxide

KGM:

Keratinocyte growth medium

Me2SO:

Dimethyl sulfoxide

mtDNA:

Mitochondrial DNA

NAC:

N-Acetyl-l-cysteine

OXPHOS:

Oxidative phosphorylation

PI:

Propidium iodide

ρ0 :

Respiration-deficient cells lacking mtDNA

ROS:

Reactive oxygen species

SELECT:

Selenium and vitamin E cancer prevention trial

References

  1. Chen JZ, Kadlubar FF (2004) Mitochondrial mutagenesis and oxidative stress in human prostate cancer. J Environ Sci Health C Environ Carcinog Ecotoxicol Rev 22:1–12

    PubMed  CAS  Google Scholar 

  2. Costello LC, Franklin RB, Feng P (2005) Mitochondrial function, zinc, and intermediary metabolism relationships in normal prostate and prostate cancer. Mitochondrion 5:143–153. doi:10.1016/j.mito.2005.02.001

    Article  PubMed  CAS  Google Scholar 

  3. Sun SY, Hail N Jr, Lotan R (2004) Apoptosis as a novel target for cancer chemoprevention. J Natl Cancer Inst 96:662–672

    Article  PubMed  CAS  Google Scholar 

  4. Bettuzzi S, Brausi M, Rizzi F, Castagnetti G, Peracchia G, Corti A (2006) Chemoprevention of human prostate cancer by oral administration of green tea catechins in volunteers with high-grade prostate intraepithelial neoplasia: a preliminary report from a one-year proof-of-principle study. Cancer Res 66:1234–1240. doi:10.1158/0008-5472.CAN-05-1145

    Article  PubMed  CAS  Google Scholar 

  5. Hail N Jr, Kim HJ, Lotan R (2006) Mechanisms of fenretinide-induced apoptosis. Apoptosis 11:1677–1694. doi:10.1007/s10495-006-9289-3

    Article  PubMed  CAS  Google Scholar 

  6. Pollard M, Luckart PH, Sporn MB (1991) Prevention of primary prostate cancer by N-4-hydroxyphenyl retinamide. Cancer Res 51:3610–3611

    PubMed  CAS  Google Scholar 

  7. Pienta KJ, Nguyen NM, Lehr JE (1993) Treatment of prostate cancer in the rat with the synthetic retinoid fenretinide. Cancer Res 53:224–226

    PubMed  CAS  Google Scholar 

  8. Shaker MR, Yang G, Timme TL et al (2000) Dietary 4-HPR suppresses the development of bone metastasis in vivo in a mouse model of prostate cancer progression. Clin Exp Metastasis 18:429–438. doi:10.1023/A:1010905309570

    Article  PubMed  CAS  Google Scholar 

  9. Hursting SD, Shen JC, Sun XY, Wang TT, Phang JM, Perkins SN (2002) Modulation of cyclophilin gene expression by N-4-(hydroxyphenyl)retinamide: association with reactive oxygen species generation and apoptosis. Mol Carcinog 33:16–24. doi:10.1002/mc.10020

    Article  PubMed  CAS  Google Scholar 

  10. Sun S-Y, Yue P, Lotan R (1999) Induction of apoptosis by N-(4-hydroxyphenyl)retinamide and its association with reactive oxygen species, nuclear retinoic acid receptors, and apoptosis related genes in human prostate carcinoma cells. Mol Pharmacol 55:403–410

    PubMed  CAS  Google Scholar 

  11. Hsieh TC, Wu JM (1997) Effects of fenretinide (4-HPR) on prostate LNCaP cell growth, apoptosis, and prostate-specific gene expression. Prostate 33:97–104. doi:10.1002/(SICI)1097-0045(19971001)33:2<97::AID-PROS3>3.0.CO;2-J

    Article  PubMed  CAS  Google Scholar 

  12. Dakubo GD, Parr RL, Costello LC, Franklin RB, Thayer RE (2006) Altered metabolism and mitochondrial genome in prostate cancer. J Clin Pathol 59:10–16. doi:10.1136/jcp.2005.027664

    Article  PubMed  CAS  Google Scholar 

  13. Serkova NJ, Gamito EJ, Jones RH et al (2008) The metabolites citrate, myo-inositol, and spermine are potential age-independent markers of prostate cancer in human expressed prostatic secretions. Prostate 68:620–628. doi:10.1002/pros.20727

    Article  PubMed  CAS  Google Scholar 

  14. Petros JA, Baumann AK, Ruiz-Pesini E et al (2005) mtDNA mutations increase tumorigenicity in prostate cancer. Proc Natl Acad Sci USA 102:719–724. doi:10.1073/pnas.0408894102

    Article  PubMed  CAS  Google Scholar 

  15. Venkataraman S, Jiang X, Weydert C et al (2005) Manganese superoxide dismutase overexpression inhibits the growth of androgen-independent prostate cancer cells. Oncogene 24:77–89. doi:10.1038/sj.onc.1208145

    Article  PubMed  CAS  Google Scholar 

  16. Ramanathan A, Wang C, Schreiber SL (2005) Perturbational profiling of a cell-line model of tumorigenesis by using metabolic measurements. Proc Natl Acad Sci USA 26:5992–5997. doi:10.1073/pnas.0502267102

    Article  CAS  Google Scholar 

  17. Hail N Jr, Cortes M, Drake EN, Spallholz JE (2008) Cancer chemoprevention: a radical perspective. Free Radic Biol Med 45:97–110. doi:10.1016/j.freeradbiomed.2008.04.004

    Article  PubMed  CAS  Google Scholar 

  18. Hail N Jr, Lotan R (2001) Mitochondrial respiration is uniquely associated with the prooxidant and apoptotic effects of N-(4-hydroxyphenyl)retinamide. J Biol Chem 276:45614–45621. doi:10.1074/jbc.M106559200

    Article  PubMed  CAS  Google Scholar 

  19. Hail N Jr, Lotan R (2000) Mitochondrial permeability transition is a central coordinating event in N-(4-hydroxyphenyl)retinamide-induced apoptosis. Cancer Epidemiol Biomarkers Prev 9:1293–1301

    PubMed  CAS  Google Scholar 

  20. Deep G, Oberlies NH, Kroll DJ, Agarwal R (2008) Isosilybin B causes androgen receptor degradation in human prostate carcinoma cells via PI3 K-Akt-Mdm2-mediated pathway. Oncogene 27:3986–3998. doi:10.1038/onc.2008.45

    Article  PubMed  CAS  Google Scholar 

  21. Hail N Jr, Youssef EM, Lotan R (2001) Evidence supporting a role for mitochondrial respiration in apoptosis induction by the synthetic retinoid CD437. Cancer Res 61:6698–6702

    PubMed  CAS  Google Scholar 

  22. Hail N Jr (2008) Mitochondrial reactive oxygen species affect sensitivity to curcumin-induced apoptosis. Free Radic Biol Med 44:1382–1393. doi:10.1016/j.freeradbiomed.2007.12.034

    Article  PubMed  CAS  Google Scholar 

  23. Pique M, Barragan M, Dalmau M, Bellosillo B, Pons G, Gil J (2000) Aspirin induces apoptosis through mitochondrial cytochrome c release. FEBS Lett 480:193–196. doi:10.1016/S0014-5793(00)01922-0

    Article  PubMed  CAS  Google Scholar 

  24. Zeng Z, Samudio IJ, Zhang W et al (2006) Simultaneous inhibition of PDK1/AKT and Fms-like tyrosine kinase 3 signaling by a small-molecule KP372–1 induces mitochondrial dysfunction and apoptosis in acute myelogenous leukemia. Cancer Res 66:3737–3746. doi:10.1158/0008-5472.CAN-05-1278

    Article  PubMed  CAS  Google Scholar 

  25. Webber MM, Bello D, Kleinman HK, Wartinger DD, Williams DE, Rhim JS (1996) Prostate specific antigen and androgen receptor induction and characterization of an immortalized adult human prostatic epithelial cell line. Carcinogenesis 17:1641–1646. doi:10.1093/carcin/17.8.1641

    Article  PubMed  CAS  Google Scholar 

  26. Hail N Jr, Carter BZ, Konopleva M, Andreeff M (2006) Apoptosis effectors mechanisms: a requiem performed in different keys. Apoptosis 11:889–904. doi:10.1007/s10495-006-6712-8

    Article  PubMed  Google Scholar 

  27. Boya P, Morales MC, Gonzalez-Polo RA et al (2003) The chemopreventive agent N-(4-hydroxyphenyl)retinamide induces apoptosis through a mitochondrial pathway regulated by proteins from the Bcl-2 family. Oncogene 22:6220–6230. doi:10.1038/sj.onc.1206827

    Article  PubMed  CAS  Google Scholar 

  28. Cuello M, Coats AO, Darko I et al (2004) N-(4-hydroxyphenyl) retinamide (4HPR) enhances TRAIL-mediated apoptosis through enhancement of a mitochondrial-dependent amplification loop in ovarian cancer cell lines. Cell Death Differ 11:527–541. doi:10.1038/sj.cdd.4401387

    Article  PubMed  CAS  Google Scholar 

  29. Hail N Jr (2005) Mitochondria: a novel target for the chemoprevention of cancer. Apoptosis 10:687–705. doi:10.1007/s10495-005-0792-8

    Article  PubMed  CAS  Google Scholar 

  30. Suzuki S, Higuchi M, Proske RJ, Oridate N, Hong WK, Lotan R (1999) Implication of mitochondria-derived reactive oxygen species, cytochrome c and caspase-3 in N-(4-hydroxyphenyl)retinamide-induced apoptosis in cervical carcinoma cells. Oncogene 18:6380–6387. doi:10.1038/sj.onc.1203024

    Article  PubMed  CAS  Google Scholar 

  31. Lee HC, Wei YH (2005) Mitochondrial biogenesis and mitochondrial DNA maintenance of mammalian cells under oxidative stress. Int J Biochem Cell Biol 37:822–834. doi:10.1016/j.biocel.2004.09.010

    Article  PubMed  CAS  Google Scholar 

  32. Turrens JF (2003) Mitochondrial formation of reactive species. J Physiol 522:335–344. doi:10.1113/jphysiol.2003.049478

    Article  CAS  Google Scholar 

  33. Zhuang S, Ouedraogo GD, Kochevar IE (2003) Downregulation of epidermal growth factor receptor signaling by singlet oxygen through activation of caspase-3 and protein phosphatases. Oncogene 22:4413–4424. doi:10.1038/sj.onc.1206604

    Article  PubMed  CAS  Google Scholar 

  34. Dalrymple S, Antony L, Xu Y et al (2005) Role of notch-1 and E-cadherin in the differential response to calcium in culturing normal versus malignant prostate cells. Cancer Res 65:9269–9279. doi:10.1158/0008-5472.CAN-04-3989

    Article  PubMed  CAS  Google Scholar 

  35. Chaproniere DM, McKeehan WL (1986) Serial culture of single adult human prostatic epithelial cells in serum-free medium containing low calcium and a new growth factor from bovine brain. Cancer Res 46:819–824

    PubMed  CAS  Google Scholar 

  36. Tamiji S, Beauvillain JC, Mortier L et al (2005) Induction of apoptosis-like mitochondrial impairment triggers antioxidant and Bcl-2-dependent keratinocyte differentiation. J Invest Dermatol 125:647–658. doi:10.1111/j.0022-202X.2005.23885.x

    Article  PubMed  CAS  Google Scholar 

  37. You KR, Wen J, Lee ST, Kim DG (2002) Cytochrome c oxidase subunit III: a molecular marker for N-(4-hydroxyphenyl)retinamide-induced oxidative stress in hepatoma cells. J Biol Chem 277:3870–3877. doi:10.1074/jbc.M109284200

    Article  PubMed  CAS  Google Scholar 

  38. Garaventa A, Luksch R, Lo Piccolo MS et al (2003) Phase I trial and pharmacokinetics of fenretinide in children with neuroblastoma. Clin Cancer Res 9:2032–2039

    PubMed  CAS  Google Scholar 

  39. Maurer BJ, Kalous O, Yesair DW et al (2007) Improved oral delivery of N-(4-hydroxyphenyl)retinamide with a novel LYM-X-SORB organized lipid complex. Clin Cancer Res 13:3079–3086. doi:10.1158/1078-0432.CCR-06-1889

    Article  PubMed  CAS  Google Scholar 

  40. Kadara H, Tahara E, Kim HJ, Lotan D, Myers J, Lotan R (2008) Involvement of Rac in fenretinide-induced apoptosis. Cancer Res 68:4416–4423. doi:10.1158/0008-5472.CAN-08-0031

    Article  PubMed  CAS  Google Scholar 

  41. Litvinov JVGDIV, Xu Y, Antony L, Dalrymple SL, Isaacs JT (2006) Low-calcium serum-free defined medium selects for growth of normal prostatic epithelial stem cells. Cancer Res 66:8598–8607. doi:10.1158/0008-5472.CAN-06-1228

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by the National Institutes of Health (Grant CA133901-01 to Numsen Hail, Jr.) and the University of Colorado Denver School of Pharmacy. The authors declare that they have no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Numsen Hail Jr..

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hail, N., Chen, P. & Kepa, J.J. Selective apoptosis induction by the cancer chemopreventive agent N-(4-hydroxyphenyl)retinamide is achieved by modulating mitochondrial bioenergetics in premalignant and malignant human prostate epithelial cells. Apoptosis 14, 849–863 (2009). https://doi.org/10.1007/s10495-009-0356-4

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10495-009-0356-4

Keywords

Navigation