Skip to main content
Log in

Confinement-Induced Instabilities in a Jet-Stabilized Gas Turbine Model Combustor

  • Published:
Flow, Turbulence and Combustion Aims and scope Submit manuscript

Abstract

Self-sustained jet flapping is observed in a confined, premixed and preheated methane-air turbulent flame, generated in a single-nozzle jet-stabilized gas turbine model combustor designed based on the FLOX concept. The flapping frequency and its complex motion within the confinement of the combustor are characterized in detail using proper orthogonal decomposition (POD) of the flow fields measured by particle imaging velocimetry (PIV). The influence of jet flapping on combustion stability is examined using simultaneous PIV/OH chemiluminescence imaging and PIV/planar laser-induced fluorescence of OH radicals (OH PLIF) at 5 kHz repetition rate. By influencing the size and location of the recirculation zones, jet flapping modifies the flame shape and flame lift-off height. It also controls the amount of hot gas entrainment into the recirculation zones. In extreme cases, jet flapping is found to cause temporary local extinction of the flame, due to jet impingement on the combustor wall and partial blockage of burned gas entrainment. The flame is only able to recover after the jet detaches from the wall and reopens the back flow channel. The results suggest that jet flapping could play a key role in the stabilization mechanisms in similar jet-stabilized combustors.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

References

  1. Lückerath, R., Meier, W., Aigner, M.: FLOX combustion at high pressure with different fuel compositions. J. Eng. Gas Turbines Power 130(1), 011505 (2008)

    Article  Google Scholar 

  2. Lammel, O., Schütz, H., Schmitz, G., Lückerath, R., Stöhr, M., Noll, B., Aigner, M., Hase, M., Krebs, W., Eng, J.: FLOX combustion at high power density and high flame temperatures. J. Eng. Gas Turbines Power 132(12), 121503 (2010)

    Article  Google Scholar 

  3. Lammel, O., Stöhr, M., Kutne, P., Dem, C., Meier, W., Aigner, M.: Experimental analysis of confined jet flames by laser measurement techniques. J. Eng. Gas Turbines Power 134(4), 041506 (2012)

    Article  Google Scholar 

  4. Roediger, T., Lammel, O., Aigner, M., Beck, C., Krebs, W.: Part-load operation of a piloted FLOX combustion system, vol. 135, p 031503 (2013)

  5. Lammel, O., Rödiger, T., Stöhr, M., Ax, H., Kutne, P., Severin, M., Griebel, P., Aigner, M.: Investigation of flame stabilization in a high-pressure multi-jet combustor by laser measurement techniques. In: ASME Turbo Expo 2014: Turbine Technical Conference and Exposition, pp V04BT04A031–V04BT04A031. American Society of Mechanical Engineers (2014)

  6. Zizin, A., Lammel, O., Severin, M., Ax, H., Aigner, M.: Development of a jet-stabilized low-emission combustor for liquid fuels. In: ASME Turbo Expo 2015: Turbine Technical Conference and Exposition, pp V04AT04A050–V04AT04A050. American Society of Mechanical Engineers (2015)

  7. Yin, Z., Nau, P., Boxx, I., Meier, W.: Characterization of a single-nozzle FLOX model combustor using khz laser diagnostics. In: ASME Turbo Expo 2015: Turbine Technical Conference and Exposition, pp V04BT04A017–V04BT04A017. American Society of Mechanical Engineers (2015)

  8. Seliger, H., Huber, A., Aigner, M.: Experimental investigation of a FLOX-based combustor for a small-scale gas turbine based chp system under atmospheric conditions. In: ASME Turbo Expo 2015: Turbine Technical Conference and Exposition, pp V04BT04A004–V04BT04A004. American Society of Mechanical Engineers (2015)

  9. Di Domenico, M., Gerlinger, P., Noll, B.: Numerical simulations of confined, turbulent, lean, premixed flames using a detailed chemistry combustion model. In: ASME 2011 Turbo Expo: Turbine Technical Conference and Exposition, pp 519–530. American Society of Mechanical Engineers (2011)

  10. Proch, F., Kempf, A.: Modeling heat loss effects in the large eddy simulation of a model gas turbine combustor with premixed flamelet generated manifolds. Proc. Combust. Inst. 35, 3337 (2015)

    Article  Google Scholar 

  11. Wünning, J., Wünning, J.: Flameless oxidation to reduce thermal no-formation. Prog. Energy Combust. Sci. 23(1), 81 (1997)

    Article  Google Scholar 

  12. Cavaliere, A., de Joannon, M.: Mild combustion. Prog. Energy Combust. Sci. 30(4), 329 (2004)

    Article  Google Scholar 

  13. Maurel, A., Ern, P., Zielinska, B., Wesfreid, J.: Experimental study of self-sustained oscillations in a confined jet. Phys. Rev. E 54(4), 3643 (1996)

    Article  Google Scholar 

  14. Gordeyev, S.V., Thomas, F.O.: Coherent structure in the turbulent planar jet. Part 1: Extraction of proper orthogonal decomposition eigenmodes and their self-similarity. J. Fluid Mech. 414, 145 (2000)

    Article  MATH  Google Scholar 

  15. Lawson, N., Davidson, M.: Self-sustained oscillation of a submerged jet in a thin rectangular cavity. J. Fluids Struct. 15(1), 59 (2001)

    Article  Google Scholar 

  16. Mi, J., Nathan, G., Luxton, R.: Mixing characteristics of a flapping jet from a self-exciting nozzle. Flow Turbul. Combust. 67(1), 1 (2001)

    Article  MATH  Google Scholar 

  17. Kong, B., Olsen, M., Fox, R., Hill, J.: Population, characteristics and kinematics of vortices in a confined rectangular jet with a co-flow. Exp. Fluids 50(6), 1473 (2011)

    Article  Google Scholar 

  18. Semeraro, O., Bellani, G., Lundell, F.: Analysis of time-resolved piv measurements of a confined turbulent jet using pod and koopman modes. Exp. Fluids 53(5), 1203 (2012)

    Article  Google Scholar 

  19. Nathan, G., Hill, S., Luxton, R.: An axisymmetric ‘fluidic’ nozzle to generate jet precession. J. Fluid Mech. 370, 347 (1998)

    Article  MATH  Google Scholar 

  20. Mi, J., Nathan, G.: Self-excited jet-precession strouhal number and its influence on downstream mixing field. J. Fluids Struct. 19(6), 851 (2004)

    Article  Google Scholar 

  21. Mi, J., Nathan, G., Wong, C.: The influence of inlet flow condition on the frequency of self-excited jet precession. J. Fluids Struct. 22(1), 129 (2006)

    Article  Google Scholar 

  22. Nathan, G., Mi, J., Alwahabi, Z., Newbold, G., Nobes, D.: Impacts of a jet’s exit flow pattern on mixing and combustion performance. Prog. Energy Combust. Sci. 32(5–6), 496 (2006)

    Article  Google Scholar 

  23. Berkooz, G., Holmes, P., Lumley, J.L.: The proper orthogonal decomposition in the analysis of turbulent flows. Ann. Rev. Fluid Mech. 25(1), 539 (1993)

    Article  MathSciNet  Google Scholar 

  24. Sirovich, L.: Turbulence and the dynamics of coherent structures. Part i: Coherent structures. Q. Appl. Math. 45(3), 561 (1987)

    MathSciNet  MATH  Google Scholar 

  25. Stöhr, M., Sadanandan, R., Meier, W.: Phase-resolved characterization of vortex-flame interaction in a turbulent swirl flame. Exp. Fluids 51(4), 1153 (2011)

    Article  Google Scholar 

  26. Rempfer, D., Fasel, H.F.: Evolution of three-dimensional coherent structures in a flat-plate boundary layer. J. Fluid Mech. 260, 351 (1994)

    Article  Google Scholar 

Download references

Acknowledgments

Zhiyao Yin acknowledges the financial support within the Helmholtz Postdoc Programme (Grant PD-112).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhiyao Yin.

Additional information

FLOX is a registered trademark of WS Wärmeprozesstechnik GmbH, Renningen, Germany.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yin, Z., Boxx, I., Stöhr, M. et al. Confinement-Induced Instabilities in a Jet-Stabilized Gas Turbine Model Combustor. Flow Turbulence Combust 98, 217–235 (2017). https://doi.org/10.1007/s10494-016-9750-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10494-016-9750-5

Keywords

Navigation