Skip to main content
Log in

Application of the Dynamic F-TACLES Combustion Model to a Lean Premixed Turbulent Flame

  • Published:
Flow, Turbulence and Combustion Aims and scope Submit manuscript

Abstract

The power-law wrinkling model proposed by Charlette et al. (Combust. Flame 131(1), 159–181, 2002) is applied in a dynamic approach (Charlette et al., 131(1),181–197 2002) and coupled with F-TACLES (Filtered TAbulated Chemistry for Large Eddy Simulation) combustion model (Schmitt et al., Proc. Combust. Inst. 34(1), 1261–1268, 2013). A ”Germano-like” procedure based on a Gaussian filtering of the flame structure is used in this dynamic formulation (Wang et al., Combust. Flam 158(11), 2199–2213, 2011). The combustion model is implemented in a block structured low-Mach code including the dynamic Smagorinsky model to describe the subgrid scale flow structures. Diverse numerical simulations are conducted for a lean premixed turbulent Bunsen type flame (Matrix Burner), both with dynamic and non-dynamic formulation of the power-low wrinkling model on two different grid levels to retrieve the evolving flow and combustion properties. Comparisons of numerical and experimental statistical results show a large discrepancy for non-dynamic formulation (Charlette et al., Combust. Flame 131(1), 159–181 2002) using different predefined values for the power exponent. The statistical results using dynamically determined model parameter are very encouraging and underline that the utilization of the dynamic formulation is very important for an automatically correct prediction of the turbulent burning velocity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Auzillon, P., Fiorina, B., Vicquelin, R., Darabiha, N., Gicquel, O., Veynante, D.: Modeling chemical flame structure and combustion dynamics in LES. Proc. Combust. Inst. 33(1), 1331–1338 (2011)

    Article  Google Scholar 

  2. Auzillon, P., Gicquel, O., Darabiha, N., Veynante, D., Fiorina, B.: A Filtered Tabulated Chemistry model for LES of stratified flames. Combust. Flame 159 (8), 2704–2717 (2012)

    Article  Google Scholar 

  3. Boger, M., Veynante, D., Boughanem, H., Trouv, A.: Direct numerical simulation analysis of flame surface density concept for large eddy simulation of turbulent premixed combustion. In Symposium (International) on Combustion 27(1), 917–925 (1998)

    Article  Google Scholar 

  4. Charlette, F., Meneveau, C., Veynante, D.: A power-law flame wrinkling model for LES of premixed turbulent combustion Part I: non-dynamic formulation and initial tests. Combust. Flame 131(1), 159–181 (2002)

    Article  Google Scholar 

  5. Charlette, F., Meneveau, C., Veynante, D.: A power-law flame wrinkling model for LES of premixed turbulent combustion Part II: Dynamic formulation. Combust. Flame 131(1), 181–197 (2002)

    Article  Google Scholar 

  6. Chen, Y.C., Peters, N., Schneemann, G.A., Wruck, N., Renz, U., Mansour, M.S.: The detailed flame structure of highly stretched turbulent premixed methane-air flames. Combust. flame 107(3), 223–IN2 (1996)

    Article  Google Scholar 

  7. Colin, O., Ducros, F., Veynante, D., Poinsot, T.: A thickened flame model for large eddy simulations of turbulent premixed combustion. Phys. Fluids 12, 1843 (2000)

    Article  Google Scholar 

  8. Fiorina, B., Vicquelin, R., Auzillon, P., Darabiha, N., Gicquel, O., Veynante, D.A.: filtered tabulated chemistry model for LES of premixed combustion. Combust. Flame 157(3), 465–475 (2010)

    Article  Google Scholar 

  9. Germano, M., Piomelli, U., Moin, P., Cabot, W.H.: A dynamic subgrid-scale eddy viscosity model. Phys. Fluids A: Fluid Dyn. (1989-1993) 3(7), 1760–1765 (1991)

    Article  MATH  Google Scholar 

  10. de Goey, L.P.H., van Oijen, J.A., Hermanns, R.T.E., Bongers, H: CHEM1D: a package for the simulation of one-dimensional flames (2003)

  11. Hussein, H.J., Capp, S.P., George, W.K.: Velocity measurements in a high-Reynolds-number, momentum-conserving, axisymmetric, turbulent jet. J. Fluid. Mech. 258, 31–75 (1994)

    Article  Google Scholar 

  12. Janicka, J., Sadiki, A.: Large eddy simulation of turbulent combustion systems. Proc. Combust. Inst. 30(1), 537–547 (2005)

    Article  Google Scholar 

  13. Klein, M., Sadiki, A., Janicka, J.: A digital filter based generation of inflow data for spatially developing direct numerical or large eddy simulations. J. Comput. Phys. 186(2), 652–665 (2003)

    Article  MATH  Google Scholar 

  14. Knikker, R., Veynante, D., Meneveau, C.: A dynamic flame surface density model for large eddy simulation of turbulent premixed combustion. Phys. Fluids (1994-present) 16(11), L91–L94 (2004)

    Article  Google Scholar 

  15. Knudsen, E., Pitsch, H.: A dynamic model for the turbulent burning velocity for large eddy simulation of premixed combustion. Combust. Flame 154(4), 740–760 (2008)

    Article  Google Scholar 

  16. Knudsen, E., Pitsch, H.: Capabilities and limitations of multi-regime flamelet combustion models. Combust. Flame 159(1), 242–264 (2012)

    Article  Google Scholar 

  17. Kuenne, G., Ketelheun, A., Janicka, J.: LES modeling of premixed combustion using a thickened flame approach coupled with FGM tabulated chemistry. Combust. Flame 158(9), 1750–1767 (2011)

    Article  Google Scholar 

  18. Moureau, V., Fiorina, B., Pitsch, H.: A level set formulation for premixed combustion LES considering the turbulent flame structure. Combust. Flame 156(4), 801–812 (2009)

    Article  Google Scholar 

  19. Moureau, V., Domingo, P., Vervisch, L.: From large-eddy simulation to direct numerical simulation of a lean premixed swirl flame: Filtered laminar flame-pdf modeling. Combust. Flame 158(7), 1340–1357 (2011)

    Article  Google Scholar 

  20. Oijen, J.V., Goey, L.D.: Modelling of premixed laminar flames using flamelet-generated manifolds. Combust. Sci. Technol. 161(1), 113–137 (2000)

    Article  Google Scholar 

  21. Pitsch, H.: A consistent level set formulation for large-eddy simulation of premixed turbulent combustion. Combust. Flame 143(4), 587–598 (2005)

    Article  Google Scholar 

  22. Pitsch, H.: Large-eddy simulation of turbulent combustion. Annu. Rev. Fluid Mech. 38, 453–482 (2006)

    Article  MathSciNet  Google Scholar 

  23. Richard, S., Colin, O., Vermorel, O., Benkenida, A., Angelberger, C., Veynante, D.: Towards large eddy simulation of combustion in spark ignition engines. Proc. Combust. Inst. 31(2), 3059–3066 (2007)

    Article  Google Scholar 

  24. Schmitt, T., Sadiki, A., Fiorina, B., Veynante, D.: Impact of dynamic wrinkling model on the prediction accuracy using the F-TACLES combustion model in swirling premixed turbulent flames. Proc. Combust. Inst. 34(1), 1261–1268 (2013)

    Article  Google Scholar 

  25. Schmitt, T., Boileau, M., Veynante, D.: Flame wrinkling factor dynamic modeling for large eddy simulations of turbulent premixed combustion. Flow, Turbulence and Combustion, 1(94), 199–217 (2014)

  26. Smith, G.P., Golden, D.M., Frenklach, M., Moriarty, N.W., Eiteneer, B., Goldenberg, M., Qin, Z.: GRI 3.0. Gas Research Institute, Chicago, IL

  27. Wang, G., Boileau, M., Veynante, D.: Implementation of a dynamic thickened flame model for large eddy simulations of turbulent premixed combustion. Combust. Flame 158(11), 2199–2213 (2011)

    Article  Google Scholar 

  28. Weller, H.G., Tabor, G., Gosman, A.D., Fureby, C.: Application of a flame-wrinkling LES combustion model to a turbulent mixing layer. In: Symposium (International) on Combustion, vol. 27, pp 899–907 (1998)

  29. Zajadatz, M., Nikolaos Z., Wolfgang, L.: Investigation of the Turbulent Flame Speed for Natural Gas and Natural Gas/Hydrogen Mixtures at High Turbulence Levels and Volumetric Heat Release Rates.. In: ASME Turbo Expo 2013: Turbine Technical Conference and Exposition. pp. V01BT04A003-V01BT04A003 (2013)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Hosseinzadeh.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hosseinzadeh, A., Schmitt, T., Sadiki, A. et al. Application of the Dynamic F-TACLES Combustion Model to a Lean Premixed Turbulent Flame. Flow Turbulence Combust 95, 481–500 (2015). https://doi.org/10.1007/s10494-015-9628-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10494-015-9628-y

Keywords

Navigation