Skip to main content
Log in

A Tabulated, Flamelet Based No Model for Large Eddy Simulations of Non Premixed Turbulent Jets with Enthalpy Loss

  • Published:
Flow, Turbulence and Combustion Aims and scope Submit manuscript

Abstract

Three LES models devoted to the NO prediction in under-adiabatic furnaces are evaluated in this paper: the NORA (NO relaxation Approach) model, based on the NO relaxation towards equilibrium, the linear model (LM) which employs a linear relation to rescale the NO consumption rate, and a new model, DF-NORA, in which the linear approximation of the LM is replaced by a tabulation of the reaction rate as a function of a NO progress variable. To generate this table, NO relaxation complex chemistry calculations are used like in NORA, but the homogeneous reactor is replaced by a steady laminar diffusion flame. These models are validated on Sandia Flame D and on the flameless case of Verissimo et al. (Ener. Fuel. 25, 2469–2480 ([32])). For both cases, NORA underpredicts the NO production due to its insensitivity to strain, while LM overpredicts NO by a factor 2 on Flame D and a factor 13 on the flameless case. DF-NORA presents the best prediction with a maximal underprediction of 30% on Flame D and an over-prediction of 30% on the final NO yield of the flameless case. The impact of a radiative source term is also assessed on Flame D, showing a local decrease of NO by less than 7% compared to the adiabatic calculation for the DF-NORA model.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. IEA: Key World Energy Statistics 2008. IEA (2008)

  2. Liang, J.: Chemical Modeling for Air Resources Fundamentals, Applications, and Corroborative Analysis. Elsevier.Inc ISBN: 978-0-12-408135-2 (2013)

  3. Crutzen, P.J.: The role of NO and NO2 in the chemistry of the troposphere and stratosphere. Ann. Rev. Earth Planet. Sci. 7, 443–472 (1979)

    Article  Google Scholar 

  4. Zeldovich, Y.B.: Acta, vol. 21, pp 577–628 (1946)

  5. Fenimore, C.P.: Formation of nitric oxide in premixed hydrocarbon flames. Symp. (Int.) Combust. 13, 373–380 (1971)

    Article  Google Scholar 

  6. Miller, J., Bowman, C.: Mechanism and modeling of nitrogen chemistry in combustion. Prog. Energy Combust. Sci. 15, 287–338 (1989)

    Article  Google Scholar 

  7. Fenimore, C.P.: The ratio NO2-NO in fuel-lean flames. Combust. Flame 25, 85–90 (1975)

    Article  Google Scholar 

  8. Zoller, B.T., Allegrini, J.M., Maas, U., Jenny, P.: PDF model for NO calculations with radiation and consistent NO-NO2 chemistry in non-premixed turbulent flames. Combust. Flame 158, 1591–1601 (2011)

    Article  Google Scholar 

  9. Wunning, J.A., Wunning, J.G.: Flameless oxidation to reduce thermal NO-formation. Prog. Energy Combust. Sci. 23, 81–94 (1997)

    Article  Google Scholar 

  10. Cavaliere, A, de Joannon, M.: Mild combustion. Prog. Energy Combust. Sci. 30, 329–366 (2004)

    Article  Google Scholar 

  11. Coelho, P.J., Peters, N.: Numerical Simulation of a Mild Combustion Burner. Combust. Flame 124, 444–465 (2001)

    Article  Google Scholar 

  12. Dally, B.B., Riesmeierb, E., Peters, N.: Effect of fuel mixture on moderate and intense low oxygen dilution combustion. Combust. Flame 137, 418–431 (2004)

    Article  Google Scholar 

  13. Ihme, M., See, Y.C.: LES flamelet modeling of a three-stream MILD combustor. Analysis of flame sensitivity to scalar inflow conditions. Proc. Combust. Inst. 33, 1309–1317 (2011)

    Article  Google Scholar 

  14. Ihme, M., Zhang, J., He, G., Dally, B.: Large-Eddy Simulation of a Jet-in-Hot-Coflow Burner Operating in the Oxygen-Diluted Combustion Regime. Flow Turbul. Combust. 89, 449–464 (2012)

    Article  Google Scholar 

  15. Duwig, C., Szasz, R.Z., Fuchs, L.: modeling of flameless combustion using Large Eddy Simulation. In: Proceedings of the GT2006, ASME Turbo Expo Power for Land, Sea and Air, GT2006-90063 (2006)

  16. Locci, C., Colin, O., Michel, J.B.: Large Eddy Simulations of a small-scale flameless combustor by means of diluted homogeneous reactors. Flow Turb. Combust. (2014). doi:10.1007/s10494-014-9548-2

  17. Kim, S.H., Huh, K.Y.: Second-order conditional moment closure modeling of turbulent piloted Jet diffusion flames. Combust. Flame 138, 336–352 (2004)

    Article  Google Scholar 

  18. Navarro-Martinez, S., Kronenburg, A.: LES-CMC simulations of a turbulent bluff-body flame. Proc. Combust. Inst. 31, 1721–1728 (2007)

    Article  Google Scholar 

  19. Hill, S.C., Smoot, L.D.: Modeling of nitrogen oxides formation and destruction in combustion systems. Prog. Energ. Combust. Sci. 26, 417–458 (2000)

    Article  Google Scholar 

  20. Biagioli, F., Guthe, F.: Effect of pressure and fuelair unmixedness on NOx emissions from industrial gas turbine burners. Combust. Flame 151, 274–288 (2007)

    Article  Google Scholar 

  21. Frassoldati, A., Frigerio, S., Colombo, E., Inzoli, F., Faravelli, T.: Determination of NOx emissions from strong swirling confined flames with an integrated CFD-based procedure. Chem. Eng. Sci. 60, 2851–2869 (2005)

    Article  Google Scholar 

  22. Vreman, A.W., Albrecht, B.A., van Oijen, J.A, de Goey, L.P.H., Bastiaans, R.J.M.: Premixed and nonpremixed generated manifolds in large-eddy simulation of Sandia Flame D and F. Combust. Flame 153, 394–416 (2008)

    Article  Google Scholar 

  23. Godel, G., Domingo, P., Vervisch, L.: Tabulation of NO x chemistry for Large-Eddy Simulation of non-premixed turbulent flames. Proc. Combust. Inst. 32, 1555–1561 (2009)

    Article  Google Scholar 

  24. Vervisch, P.E., Michel, J.B., Colin, O., Darabiha, N.: NO relaxation approach (NORA) to predict thermal NO in combustion chamber. Combust. Flame 158, 80–99 (2011)

    Article  Google Scholar 

  25. Knop, V., Nicolle, A., Colin, O.: modeling and speciation of nitrogen oxides in engines. Proc. Combust. Inst. 34, 667–675 (2013)

    Article  Google Scholar 

  26. Ihme, M., Pitsch, H.: Modeling of radiation and nitric oxide formation in turbulent nonpremixed flames using a flamelet/progress variable formulation. Phys. Fluids 20, 055110 (2008)

    Article  MathSciNet  Google Scholar 

  27. Barlow, R.S., Frank, J.H.: Proc. Combust. Inst. 27, 1087–1095 (1998). (experimental database at http://www.ca.sandia.gov/TNF/DataArch/FlameD.html)

    Article  Google Scholar 

  28. Meier, W., Barlow, R.S., Chen, Y.-L.: Raman/Rayleigh/LIF measurements in a turbulent CH4/H2/N2 jet diffusion flame: experimental techniques and turbulencechemistry interaction. Combust. Flame, 326–343 (2000)

  29. Schneider, C., Dreizler, A., Janicka, J., Hassel, E.: Flow field measurements of stable and locally extinguishing hydrocarbon-fuelled jet flames. Combust. Flame 135, 185–190 (2003)

    Article  Google Scholar 

  30. Poitou, D., Hafi, M.E., Cuenot, B.: Analysis of radiation modeling for turbulent combustion : development of a methodology to couple turbulent combustion and radiative heat transfer in LES. J. Heat Transf. 062701, 133 (2010)

    Google Scholar 

  31. Poitou, D., Amaya, J., Hafi, M.E., Cuenot, B.: Analysis of the interaction between turbulent combustion and thermal radiation using unsteady coupled LES/DOM simulations. Combust. Flame 159, 1605–1618 (2012)

    Article  Google Scholar 

  32. Verissimo, A.S., Rocha, A.M.A., Costa, M.: Operational, Combustion, and Emission Characteristics of a Small-Scale Combustor. Ener. Fuel 25, 2469–2480 (2011)

    Article  Google Scholar 

  33. Smagorinsky, J.: General circulation experiments with the primitive equations. Mon. Wea. Rev. 91, 99–164 (1963)

    Article  Google Scholar 

  34. Soufiani, A., Djavdan, E.: A comparison between weighted sum of gray gases and statistical narrow-band radiation models for combustion applications. Combust. Flame 97, 240–250 (1994)

    Article  Google Scholar 

  35. Roger, M., Silva, C.B.D., Coelho, P.J.: Analysis of the turbulence radiation interactions for large eddy simulations of turbulent flows. Int. J. Heat Mass Transf. 52, 2243–2254 (2009)

    Article  MATH  Google Scholar 

  36. Roger, M., Silva, C.B.D., Coelho, P.J.: The influence of the non-resolved scales of thermal radiation in large eddy simulation of turbulent flows: A fundamental study. Int. J. Heat Mass Transf. 53, 2897–2907 (2010)

    Article  MATH  Google Scholar 

  37. Bowman, C., Hanson, R., Davidson, D., Gardiner, W., Lissianski, V., Smith, G., Golden, D., Frenklach, M., Goldenberg, M.: http://www.me.berkeley.edu/gri_mech/ (1995)

  38. Tillou, J., Michel, J.-B., Angelberger, C., Veynante, D.: Assessing LES models based on tabulated chemistry for the simulation of Diesel spray combustion. Combust. Flame 161, 525–540 (2014)

    Article  Google Scholar 

  39. Girimaji, S.S., Zhou, Y.: Analysis and modeling of subgrid scalar mixing using numerical data. Phys. Fluids. 8, 1224–1236 (1996)

    Article  MATH  Google Scholar 

  40. Pierce, C., Moin, P.: A dynamic model for subgrid scale variance and dissipation rate of a conserved scalar. Phys. Fluids 10, 3041–3044 (1998)

    Article  MATH  MathSciNet  Google Scholar 

  41. Peters, N.: Turbulent combustion. Cambridge University Press (2000)

  42. Fiorina, B., Baron, R., Gicquel, L., Thevenin, D., Carpentier, S., Darabiha, N.: modeling non-adiabatic partially premixed flames using flame-prolongation of ILDM. Combust. Theory Modell. 7, 449–470 (2003)

    Article  Google Scholar 

  43. Smith, G.P., Golden, D.M., Frenklach, M., Moriarty, N.W., Eiteneer, B., Goldenberg, M., Bowman, C.T., Hanson, R.K., Song, S., Gardiner Jr., W.C., Lissianski, V.V., Qin, Z.: http://www.me.berkely.edu/gri_mech/

  44. Vervisch, L., Hauguel, R., Domingo, P., Rullaud, M.: Three facets of turbulent combustion modeling: DNS of premixed V-flame, LES of lifted nonpremixed flame and RANS of jet-flame. J. Turb. 5, 1–36 (2004)

    Article  Google Scholar 

  45. Michel, J.B., Colin, O., Angelberger, A.: On the formulation of species reaction rates in the context of multi-species CFD codes using complex chemistry tabulation techniques. Combust. Flame 157, 701–714 (2010)

    Article  Google Scholar 

  46. Jensen, K.A., Ripoll, J., Wray, A., Joseph, D., Hafi, M.E.: On various modeling approaches to radiative heat transfer in pool fires. Combust. Flame 148, 263–279 (2007)

    Article  Google Scholar 

  47. Joseph, D., Hafi, M.E., Fournier, R., Cuenot, B.: Comparison of three spatial differencing schemes in discrete ordinates method using three-dimensional unstructured meshes. Int. J. Therm. Sci. 44, 851–864 (2005)

    Article  Google Scholar 

  48. Pitsch, H.: FlameMaster, A C++ Computer Program for 0D Combustion and 1D Laminar Flame Calculations

  49. Nishioka, M., Kondoh, Y., Takeno, T.: Behavior of key reactions on no formation in methane-air flames. Proc. Combust. Inst. 26, 2139–2145 (1996)

    Article  Google Scholar 

  50. Gauthier, S., Nicolle, A., Baillis, D.: Investigation of the flame structure and nitrogen oxides formation in lean porous premixed combustion of natural gas/hydrogen blends. Int. Jour. Hydr. Ener. 33, 4893–4905 (2008)

    Article  Google Scholar 

  51. Cao, R.R., Pope, S.: The influence of chemical mechanisms on PDF calculations of nonpremixed piloted jet flames. Combust. Flame 143, 450–470 (2005)

    Article  Google Scholar 

  52. Smirnov, A., Shi, S., Celik, I.: Random flow generation technique for Large-Eddy Simulations and particle-dynamics modeling. J. Fluids Eng. 123, 359–371 (2001)

    Article  Google Scholar 

  53. Kraichnan, R.: Diffusion by a Random Velocity Field. Phy. Fluids 13, 22–31 (1970)

    Article  MATH  Google Scholar 

  54. Kee, R.J., Rupley, F.M., Miller, J.A.: Chemkin-II: a fortran chemical kinetics package for the analysis of gas phase chemical kinetics. Sandia Nation. Labor. Report. SAND89-8009B (1994)

  55. Coelho, P.J., Teerling, O.J., Roekaerts, D.: Spectral radiative effects and turbulence/radiation interaction in a non-luminous turbulent jet diffusion flame. Combust. Flame 133, 75–91 (2003)

    Article  Google Scholar 

  56. Martinez, L., Michel, J.B., Jay, S., Colin, O.: Evaluation of different tabulation techniques dedicated to the prediction of the combustion and pollutants emissions on a diesel engine with 3D CFD. SAE, 2013-01-1093 (2013)

  57. Coelho, P.J.: Numerical simulation of the interaction between turbulence and radiation in reactive flows Progr. Energy Combust. Sci. 33, 311–383 (2007)

    Article  Google Scholar 

  58. Cuoci, A., Frassoldati, A., Stagni, A., Faravelli, T., Ranzi, E., Buzzi-Ferraris, G.: Numerical Modeling of NO x Formation in Turbulent Flames Using a Kinetic Post-processing Technique. Ener. Fuel. 27, 1104–1122 (2013)

    Article  Google Scholar 

  59. Lamouroux, J., Ihme, M., Fiorina, B., Gicquel, O.: Tabulated chemistry approach for diluted combustion regimes with internal recirculation and heat losses. Combust. Flame (2014). in press

  60. Nicolle, A., Dagaut, P.: Occurrence of NO-reburning in {MILD} combustion evidenced via chemical kinetic modeling. Fuel 85, 2469–2478 (2006)

    Article  Google Scholar 

  61. Braun-Unkhoff, M., Frank, P., Koger, S., Leuckel, W., Stapf, D.: Evaluation of NO x Reburning Models under Large-Scale Conditions. Clean Air 3, 273–303 (2002)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Locci, C., Colin, O., Poitou, D. et al. A Tabulated, Flamelet Based No Model for Large Eddy Simulations of Non Premixed Turbulent Jets with Enthalpy Loss. Flow Turbulence Combust 94, 691–729 (2015). https://doi.org/10.1007/s10494-014-9591-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10494-014-9591-z

Keywords

Navigation