Skip to main content
Log in

Assessing the Predictive Capabilities of Combustion LES as Applied to the Sydney Flame Series

  • Published:
Flow, Turbulence and Combustion Aims and scope Submit manuscript

Abstract

Large Eddy Simulation (LES) and flamelet-based combustion models were applied to four bluff-body stabilized nonpremixed and partially premixed flames selected from the Sydney flame series, based on Masri’s bluff-body test rig (University of Sydney). Three related non-reacting flow cases were also investigated to assess the performance of the LES solver. Both un-swirled and swirled cases were studied exhibiting different flow features, such as recirculation, jet precessing and vortex breakdown. Due to various fuel compositions, flow rates and swirl numbers, the combustion characteristics of the flames varied greatly. On six meshes with different blocking structure and mesh sizes, good prediction of flow and scalar fields using LES/flamelet approaches and known fuel and oxidizer mass fluxes was achieved. The accuracy of predictions was strongly influenced by the combustion model used. All flames were calculated using at least two modeling strategies. Starting with calculations of isothermal flow cases, simple single flamelet based calculations were carried out for the corresponding reacting cases. The combustion models were then adjusted to fit the requirements of each flame. For all flame calculations good agreement of the main flow features with the measured data was achieved. For purely nonpremixed flames burning attached to the bluff-body’s outer edge, flamelet modeling including strain rate effects provided good results for the flow field and for most scalars. The prediction of a partially premixed swirl flame could only be achieved by applying a flamelet-based progress variable approach.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Flemming, F., Olbricht, C., Wegner, B., Sadiki, A., Janicka, J., Bake, F., Michel, U., Lehmann, B., Röhle, I.: Analysis of unsteady motion with respect to noise sources in a gas turbine combustor: isothermal flow case. Flow Turbul. Combust. 75, 3–27 (2005)

    Article  MATH  Google Scholar 

  2. Huijnen, V., Somers, B., Olbricht, C., Sadiki, A., Baert, R., de Goey, P., Janicka, J.: Study of turbulent flow structures of a practical steady engine head flow using Large Eddy simulation. J. Fluids Eng. 128, 1181–1191 (2006)

    Article  Google Scholar 

  3. Janicka, J., Sadiki, A.: Large Eddy simulation of turbulent combustion systems. Proc. Combust. Inst. 30, 537–547 (2005)

    Article  Google Scholar 

  4. Rhodes, R.P.: A probability distribution function for turbulent flows. In: Turbulent Mixing in Nonreactive and Reactive Flows, vol. 41, pp. 235–241 (1975)

  5. Olbricht, C., Hahn, F., Sadiki, A., Janicka, J.: Analysis of subgrid scale mixing using a hybrid LES-Monte-Carlo PDF method. Int. J. Heat Fluid Flow 28, 1215–1226 (2007)

    Article  Google Scholar 

  6. Pitsch, H.: Large-Eddy simulation of turbulent combustion. Annu. Rev. Fluid Mech. 38, 453–482 (2006)

    Article  MathSciNet  Google Scholar 

  7. Kempf, A., Lindstedt, R.P., Janicka, J.: Large-eddy simulation of a bluff-body stabilized nonpremixed flame. Combust. Flame 144, 170–189 (2006)

    Article  Google Scholar 

  8. Spalding, D.B.: Mixing and chemical reaction in steady confined turbulent flames. Symp. Int. Combust. 13, 649–657 (1971)

    Article  Google Scholar 

  9. Pierce, C.D., Moin, P.: Progress variable approach for Large-Eddy simulation of non-premixed turbulent combustion. J. Fluid Mech. 504, 73–97 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  10. Vreman, A.W., Albrecht, B.A., van Oijen, J.A., de Goey, L.P.H., Bastiaans, R.J.M.: Premixed and nonpremixed generated manifolds in Large-Eddy simulation of Sandia flame D and F. Combust. Flame 153, 394–416 (2008)

    Article  Google Scholar 

  11. Raman, V., Pitsch, H., Fox, R.O.: Hybrid Large-Eddy simulation/Lagrangian filtered-density-function approach for simulating turbulent combustion. Combust. Flame 143, 56–78 (2005)

    Article  Google Scholar 

  12. Navarro-Martinez, S., Kronenburg, A.: LES-CMC simulations of a turbulent bluff body flame. Proc. Combust. Inst. 31, 1721–1728 (2007)

    Article  Google Scholar 

  13. El-Asrag, H., Menon, S.: Large Eddy simulation of bluff body stabilized swirling non-premixed flames. Proc. Combust. Inst. 31, 1747–1754 (2007)

    Article  Google Scholar 

  14. Dally, B.B., Fletcher, D.F., Masri, A.R.: Flow and mixing fields of turbulent bluff-body jets and flames. Combust. Theory Model. 2, 193–219 (1998)

    Article  MATH  Google Scholar 

  15. Dally, B.B., Masri, A.R., Barlow, R.S., Fiechtner, G.J.: Instantaneuos and mean compositional structure of bluff-body stabilized nonpremixed flames. Combust. Flame 114, 119–148 (1998)

    Article  Google Scholar 

  16. Masri, A.R., Pope, S.B., Dally, B.B.: Probability density function computations of a strongly swirling nonpremixed flame stabilized on a new burner. Proc. Combust. Inst. 28, 123–131 (2000)

    Article  Google Scholar 

  17. Kalt, P.A.M., Al-Abdeli, Y.M., Masri, A.R., Barlow, R.S.: Swirling turbulent non-premixed flames of methane: flow field and compositional structure. Proc. Combust. Inst. 29, 1913–1919 (2002)

    Article  Google Scholar 

  18. Al-Abdeli, Y.M., Masri, A.R.: Stability characteristics and flowfields of turbulent non-premixed swirling flames. Combust. Theory Model. 7, 731–766 (2003)

    Article  MATH  Google Scholar 

  19. Al-Abdeli, Y.M., Masri, A.R.: Recirculation and flowfield regimes of unconfined non-reacting swirling flows. Exp. Therm. Fluid Sci. 27, 655–665 (2003)

    Article  Google Scholar 

  20. TNF7: International Workshop on Measurement and Computation of Turbulent Nonpremixed Flames. Chicago (2004)

  21. Raman, V., Pitsch, H., Fox, R.O.: Eulerian transported probability density sub-filter model for Large-Eddy simulation of turbulent combustion. Combust. Theory Model. 10, 439–458 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  22. Merci, B., Roekaerts, D., Naud, B., Pope, S.B.: Comparative study of micromixing models in transported scalar pdf simulations of turbulent nonpremixed flames. Combust. Flame 146, 109–130 (2006)

    Article  Google Scholar 

  23. Hall, M.G.: Vortex breakdown. Annu. Rev. Fluid Mech. 4, 195–218 (1972)

    Article  Google Scholar 

  24. Lucca-Negro, O., O’Doherty, T.: Vortex breakdown: a review. Prog. Energy Combust. Sci. 27(4), 431–481 (2001)

    Article  Google Scholar 

  25. Stein, O., Kempf, A.: LES of the sydney swirl flame series: a study of vortex breakdown in isothermal and reacting flows. Proc. Combust. Inst. 31, 1755–1763 (2007)

    Article  Google Scholar 

  26. TNF8: International Workshop on Measurement and Computation of Turbulent Nonpremixed Flames. Heidelberg (2006)

  27. Smagorinsky, J.: General circulation experiments with the primitive equations: I. the basic equations. Mon. Weather Rev. 91, 99–164 (1963)

    Article  Google Scholar 

  28. Germano, M., Piomelli, U., Moin, P., Cabot, W.H.: A dynamic subgrid-scale eddy viscosity model. Phys. Fluids A 3(7), 1760–1765 (1991)

    Article  MATH  Google Scholar 

  29. Lilly, D.K.: A proposed modification of the germano subgrid-scale closure method. Phys. Fluids A 4, 633–635 (1992)

    Article  Google Scholar 

  30. Lésieur, M., Métais, O.: New trends in Large Eddy simulation of turbulence. Annu. Rev. Fluid Mech. 28, 45–82 (1996)

    Article  Google Scholar 

  31. Williams, F.A.: Recent advances in theoretical descriptions of turbulent diffusion flames. Turbulent Mixing in Non-Reactive and Reactive Flows. Plenum, New York (1975)

    Google Scholar 

  32. Peters, N.: Laminar flamelet concepts in turbulent combustion. Proc. Combust. Inst. 21, 1231–1250 (1986)

    Google Scholar 

  33. Girimaji, S.S., Zhou, Y.: Analysis and modeling of subgrid scalar mixing using numerical data. Phys. Fluids 8, 1224–1236 (1996)

    Article  MATH  Google Scholar 

  34. van Oijen, J.: Flamelet-Generated Manifold: development and application to premixed laminar flames. PhD thesis, Technische Universiteit Eindhoven (2002)

  35. van Oijen, J.A., de Goey, L.P.H.: Laminar flamelet concepts in turbulent combustion. Combust. Theory Model. 6, 463–478 (2002)

    Article  Google Scholar 

  36. Branley, N., Jones, W.P.: Large Eddy simulation of a turbulent non-premixed flame. Combust. Flame 127, 1914–1934 (2001)

    Article  Google Scholar 

  37. Landenfeld, T., Sadiki, A., Janicka, J.: A turbulence-chemistry interaction model based on a multivariate presumed beta-PDF method for turbulent flames. Flow Turbul. Combust. 68, 111–135 (2002)

    Article  MATH  Google Scholar 

  38. Olbricht, C., Hahn, F., Ketelheun, A., Janicka, J.: Strategies for presumed PDF modelling for LES with premixed flamelet generated manifolds. J. Turbul. 11, N38 (2010)

  39. Durst, F., Schäfer, M.: A parallel blockstructured multigrid method for the prediction of incompressible flow. Int. J. Numer. Methods Fluids 22(6), 549–565 (1996)

    Article  MATH  Google Scholar 

  40. Lehnhäuser, T., Schäfer, M.: Improved linear interpolation practice for finite-volume schemes on complex grids. Int. J. Numer. Methods Fluids 38(7), 625–645 (2002)

    Article  MATH  Google Scholar 

  41. Waterson, N.P., Deconinck, H.: Development of bounded higher-order convection scheme for general industrial applications. Project Report 1994-33. Von Karman Institute (1994)

  42. Klein, M., Sadiki, A., Janicka, J.: A digital filter based generation of inflow data for spatially developing direct numerical or Large Eddy simulation. J. Comput. Phys. 186, 652–665 (2003)

    Article  MATH  Google Scholar 

  43. TNF6 Bluff-Body Flames: Experimental Data Download Site (2008). http://www.aeromech.usyd.edu.au/thermofluids/. Accessed 3 September 2008

  44. Ketelheun, A., Olbricht, C., Hahn, F., Janicka, J.: Premixed generated manifolds for the computation of technical combustion systems. In: ASME Turbo Expo, GT2009-59940. Orlando, USA (2009)

  45. Bowman, C.T., Hanson, R.K., Davidson, D.F., Gardiner, W.C., jun. Lissianski, V., Smith, G.P., Golden, D.M., Frenklach, M., Goldenberg, M.: GRI-Mech (2008). http://www.me.berkeley.edu/gri-mech/. Accessed 3 September 2008

  46. Kuan, T., Lindstedt, P.: Transported probability density function modeling of a bluff body stabilized turbulent flame. Proc. Combust. Inst. 30, 767–774 (2005)

    Article  Google Scholar 

  47. Olbricht, C., Hahn, F., Janicka, J.: Detailed numerical investigation of sydney bluff-body flames. ERCOFTAC Symposium on Engineering Turbulence Modelling and Measurements, pp. 713–718 (2008)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anja Ketelheun.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Olbricht, C., Ketelheun, A., Hahn, F. et al. Assessing the Predictive Capabilities of Combustion LES as Applied to the Sydney Flame Series. Flow Turbulence Combust 85, 513–547 (2010). https://doi.org/10.1007/s10494-010-9300-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10494-010-9300-5

Keywords

Navigation