Skip to main content
Log in

Analysis of Unsteady Motion with Respect to Noise Sources in a Gas Turbine Combustor: Isothermal Flow Case

  • Published:
Flow, Turbulence and Combustion Aims and scope Submit manuscript

Abstract

In order to evaluate the direct and indirect contributions to the total combustion noise emission, a combustion chamber consisting of a swirl burner and an exit nozzle of Laval-shape, representing a gas turbine combustor, is investigated by means of experiments and large eddy simulation. Focused on the isothermal flow case first and encouraged by a good overall agreement between the LES and the experimental data for the flow field, a first characterisation of the flow with respect to noise sources is performed. To analyse acoustic properties of the flow, time and length scales are evaluated inside the combustor. Furthermore, the evidence for the existence of a precessing vortex core (PVC), typical for configurations with swirl, is revealed. Finally, the effect of the PVC on the flow inside the Laval nozzle is discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Dowling, A.P., Acoustics of unstable flows. In: Tatsumi, T., Watanabe, E. and Kambe, T. (eds.), Theoretical and Applied Mechanics. Elsevier, Amsterdam (1996) pp. 171–186.

    Google Scholar 

  2. Truffaut, J.-M., Searby, G. and Boyer, L., Sound emission by non-isomolar combustion at low Mach numbers. Combust. Theory Model. 2 (1998) 423–428.

    ADS  MATH  Google Scholar 

  3. Marble, F.E. and Candel, S.M., Acoustic disturbances from gas non-uniformities convected through a nozzle. J. Sound Vibrat. 55(2) (1977) 225–243.

    Article  ADS  MATH  Google Scholar 

  4. Muthukrishnan, M., Strahle, W.C. and Neale, D.H., Separation of hydrodynamic, entropy, and combustion noise in a gas turbine combustor. AIAA J. 16(4) (1978) 320–327.

    ADS  Google Scholar 

  5. Strahle, W.C., The combustion noise source. In: Noise-Con 83, National Conference on Noise Control Engineering, Cambridge, MA, USA (1983), pp. 379–388.

  6. Seror, C., Sagaut, P., Bailly, C. and Juvé, D., On the radiated noise computed by large-eddy simulation. Phys. Fluids 13(2) (2001) 476–487.

    Article  ADS  Google Scholar 

  7. Durbin, P., A perspective on recent developments in RANS modeling. In: Rodi, W. and Fueyo, N. (eds.), Engineering Turbulence Modelling and Experiments, Vol. 5. Elsevier (2002) pp. 3–16.

  8. Wegner, B., Maltsev, A., Schneider, C., Sadiki, A., Dreizler, A. and Janicka, J., Assessment of unsteady RANS in predicting swirl flow instability based on LES and experiments. Int. J. Heat Fluid Flow 25(3) (2004) 28–36.

    Article  Google Scholar 

  9. Janicka, J. and Sadiki, A., Large eddy simulation of turbulent combustion systems. Proc. Combust. Inst. 30 (2005) 537–547.

    Google Scholar 

  10. Selle, L., Lartigue, G., Poinsot, T., Koch, R., Schildmacher, K.-U., Krebs, W., Prade, B., Kaufmann, P. and Veynante, D., Compressible large eddy simulation of turbulent combustion in complex geometry on unstructured meshes. Combust. Flame 137 (2004) 489–505.

    Article  Google Scholar 

  11. Branley, N. and Jones, W.P., Large eddy simulation of a turbulent non-premixed flame. Combust. Flame 127 (2001) 1914–1934.

    Article  Google Scholar 

  12. Forkel, H. and Janicka, J., Large-eddy simulation of a turbulent hydrogen diffusion flame. Flow Turbulence Combust. 65 (2000) 163–175.

    Article  MATH  Google Scholar 

  13. Kempf, A., Flemming, F. and Janicka, J., Investigation of lengthscales, scalar dissipation, and flame orientation in a piloted diffusion flame by LES. Proc. Combust. Inst. 30 (2005) 557–565.

    Google Scholar 

  14. Pitsch, H. and Steiner, H., Large-eddy simulation of a turbulent piloted methane/air diffusion flame (Sandia flame D). Phys. Fluids 12(10) (2000) 2541–2554.

    Article  ADS  Google Scholar 

  15. Angelberger, C., Veynante, D. and Egolfopoulos, F., LES of chemical and acoustic forcing of a premixed dump combustor. Flow Turbulence Combust. 65(2) (2001) 205–222.

    Google Scholar 

  16. Kim, W.-W., Menon, S. and Mongia, H.C., Large eddy simulation of a gas combustor flow. Combust. Sci. Tech. 143 (1999) 25–62.

    Google Scholar 

  17. Zang, G., Yang, Z. and McGuirk, J.J., Large eddy simulation of isothermal confined swirling flow with recirculation. In: Rodi, W. and Fueyo, N. (eds.), Engineering Turbulence Modelling and Experiments, Vol. 5. Elsevier, Amsterdam, The Netherlands (2002) pp. 885–894.

  18. Michalke, A., Absolute inviscid instability of a ring jet with back-flow and swirl. Eur. J. Mech. B Fluids 18(1) (1999) 3–12.

    MATH  ADS  Google Scholar 

  19. Monkewitz, P.A. and Sohn, K.D., Absolute instability in hot jets. AIAA J. 26(8) (1988) 911–916.

    Article  ADS  Google Scholar 

  20. Shenoda, F.B., Reflexionsarme Abschlüsse für durchströmte Kanäle. Dissertation, Technische Universität Berlin (1973).

  21. Fritz, J., Flammenrückschlag durch verbrennungsinduziertes Wirbelaufplatzen. Dissertation, Technische Universität München (2003).

  22. Germano, M., Piomelli, U., Moin, P. and Cabot, W.H., A dynamic subgrid-scale viscosity model. Phys. Fluids A 3(7) (1991) 1760–1765.

    Article  ADS  MATH  Google Scholar 

  23. Lilly, D. K., A proposed modification of the germano subgrid-scale closure method. Phys. Fluids A 4(3) (1992) 633–635.

    Article  ADS  MathSciNet  Google Scholar 

  24. Smagorinsky, J.S., General circulation experiments with the primitive equations. 1. The basic experiment. Month. Weather Rev. 91 (1963) 99–164.

    ADS  Google Scholar 

  25. Lésieur, M. and Métais, O., New trends in large eddy simulation of turbulence. Annu. Rev. Fluid Mech. 28 (1996) 45–82.

    ADS  Google Scholar 

  26. Lehnhäuser, T. and Schäfer, M., Improved linear interpolation practice for finite-volume schemes on complex grids. Int. J. Numer. Method Fluids 38(7) (2002) 625–645.

    Article  MATH  Google Scholar 

  27. Waterson, N.P. and Deconinck, H., Development of Bounded Higher-Order Convection Scheme for General Industrial Applications. Project Report 1994-33, Von Karman Institute (1994).

  28. Durst, F. and Schäfer, M., A parallel blockstructured multigrid method for the prediction of incompressible flow. Int. J. Numer. Methods Fluids 22(6) (1996) 549–565.

    Article  MATH  Google Scholar 

  29. Klein, M., Sadiki, A. and Janicka, J., A digital filter based generation of inflow data for spatially developing direct numerical or large eddy simulations. J. Comput. Phys. 186 (2003) 652–665.

    Article  ADS  MATH  Google Scholar 

  30. Lighthill, M.J., On sound generated aerodynamically: I. General theory. Proc. R. Soc. Lond. Ser. A 211 (1952) 564–587.

    ADS  MATH  MathSciNet  Google Scholar 

  31. Strahle, W.C., On combustion generated noise. J. Fluid Mech. 49(2) (1971) 399–414.

    ADS  MATH  Google Scholar 

  32. Pope, S.B., Turbulent Flows. Cambridge University Press, Cambridge, UK (2000).

    MATH  Google Scholar 

  33. Früchtel, G., Hassel, E.P. and Janicka, J., Turbulent length scales in a swirling flame. Proc. Combust. Inst. 26 (1996) 195–202.

    Google Scholar 

  34. Schneider, C., Über die Charakterisierung von Turbulenzstrukturen in verdrallten Strömungen. Dissertation, TU Darmstadt (2003).

  35. Schneider, C., Dreizler, A. and Janicka, J., Fluid dynamical analysis of atmospheric reacting and isothermal swriling flows. Flow Turburbulence Combust. 74 (2005) 103–127.

    MATH  Google Scholar 

  36. Rienstra, S.W. and Hirschberg, A., An Introduction to Acoustics. Report IWDE 01-03, Eindhoven University of Technology, version 03/26/2003 (extended and revised version of IWDE 92-06) (2001).

  37. Lucca-Negro, O. and O'Doherty, T., Vortex breakdown: A review. Prog. Energy Combust. Sci. 27(4) (2001) 431–481.

    Article  Google Scholar 

  38. Syred, N., Fick, W., O'Doherty, T. and Griffiths, A.J., The effect of the precessing vortex core on combustion in a swirl burner. Combust. Sci. Tech. 125 (1997) 139–157.

    Google Scholar 

  39. Derksen, J.J. and Van den Akker, H.E.A., Simulation of vortex core precession in a reverse-flow cyclone. AIChE J. 46(7) (2000) 1317–1331.

    Article  Google Scholar 

  40. Jeong, J. and Hussain, F., On the identification of a vortex. J. Fluid Mech. 285 (1995) 69–94.

    ADS  MathSciNet  MATH  Google Scholar 

  41. Gupta, A.K., Lilley, D.G. and Syred, N., Swirl Flows. Abacus Press, Tunbridge Wells, Kent (1984).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to F. Flemming.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Flemming, F., Olbricht, C., Wegner, B. et al. Analysis of Unsteady Motion with Respect to Noise Sources in a Gas Turbine Combustor: Isothermal Flow Case. Flow Turbulence Combust 75, 3–27 (2005). https://doi.org/10.1007/s10494-005-8577-2

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10494-005-8577-2

Key Words

Navigation