Skip to main content
Log in

Scaling of Conditional Lagrangian Time Correlation Functions of Velocity and Pressure Gradient Magnitudes in Isotropic Turbulence

  • Published:
Flow, Turbulence and Combustion Aims and scope Submit manuscript

Abstract

We study Lagrangian statistics of the magnitudes of velocity and pressure gradients in isotropic turbulence by quantifying their correlation functions and their characteristic time scales. In a recent work (Yu and Meneveau, Phys Rev Lett 104:084502, 2010), it has been found that the Lagrangian time-correlations of the velocity and pressure gradient tensor and vector elements scale with the locally-defined Kolmogorov time scale, evaluated from the locally-averaged dissipation-rate (ϵ r ) and viscosity (ν) according to \(\tau_{K,r}=\sqrt{\nu/\epsilon_r}\). In this work, we study the Lagrangian time-correlations of the absolute values of velocity and pressure gradients. It has long been known that such correlations display longer memories into the inertial-range as well as possible intermittency effects. We explore the appropriate temporal scales with the aim to achieve collapse of the correlation functions. The data used in this study are sampled from the web-services accessible public turbulence database (http://turbulence.pha.jhu.edu). The database archives a 10244 (space+time) pseudo-spectral direct numerical simulation of forced isotropic turbulence with Taylor-scale Reynolds number Re λ  = 433, and supports spatial differentiation and spatial/temporal interpolation inside the database. The analysis shows that the temporal auto-correlations of the absolute values extend deep into the inertial range where they are determined not by the local Kolmogorov time-scale but by the local eddy-turnover time scale defined as \(\tau_{e,r}= r^{2/3}\epsilon_r^{-1/3}\). However, considerable scatter remains and appears to be reduced only after a further (intermittency) correction factor of the form of (r/L)χ is introduced, where L is the turbulence integral scale. The exponent χ varies for different variables. The collapse of the correlation functions for absolute values is, however, less satisfactory than the collapse observed for the more rapidly decaying strain-rate tensor element correlation functions in the viscous range.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Yu, H., Meneveau, C.: Lagrangian refined Kolmogorov similarity hypothesis for gradient time-evolution in turbulent flows. Phys. Rev. Lett. 104, 084502 (2010)

    Article  Google Scholar 

  2. Taylor, G.I.: Diffusion by continuous movements. Proc. Lond. Math. Soc. 20, 196 (1921)

    Article  Google Scholar 

  3. Richardson, L.F.: Atmospheric diffusion shown on a distance-neighbor graph. Proc. R. Soc. Lond., A 110, 709 (1926)

    Article  Google Scholar 

  4. Kolmogorov, A.N.: The local structure of turbulence in incompressible viscous fluid for very large Reynolds numbers. Dokl. Akad. Nauk SSSR 30, 301 (1941)

    Google Scholar 

  5. Kolmogorov, A.N.: A refinement of previous hypotheses concerning the local structure of turbulence in a viscous incompressible fluid at high Reynolds number. J. Fluid Mech. 13, 82 (1962)

    Article  MATH  MathSciNet  Google Scholar 

  6. Oboukhov, A.M.: Some specific features of atmospheric turbulence. J. Fluid Mech. 13, 77 (1962)

    Article  MATH  MathSciNet  Google Scholar 

  7. Stolovitzky, G., Kailasnath, P., Sreenivasan, K.R.: Kolmogorov’s refined similarity hypotheses. Phys. Rev. Lett. 69, 1178 (1992)

    Article  Google Scholar 

  8. Thoroddsen, S.T., van Atta, C.W.: Experimental evidence supporting Kolmogorov’s refined similarity hypothesis. Phys. Fluids, A 4, 2592 (1992)

    Article  Google Scholar 

  9. Chen, S., Doolen, G.D., Kraichnan, R.H., She, Z.-S.: On statistical correlations between velocity invrements and locally averaged dissipation in homogenous turbulence. Phys. Fluids, A 5, 458 (1993)

    Article  Google Scholar 

  10. Stolovitzky, G., Sreenivasan, K.R.: Kolmogorov’s refined similarity hypotheses for turbulence and general stochastic processes. Rev. Mod. Phys. 66, 229 (1994)

    Article  Google Scholar 

  11. Chen, S., Doolen, G.D., Kraichnan, R.H., Wang, L.-P.: Is the Kolmogorov refined similarity relation dynamic or kinematic. Phys. Rev. Lett. 74, 1775 (1995)

    Article  Google Scholar 

  12. Ching, E.S.C., Guo, H., Lo, T.S.: Lagrangian properties of particles in turbulence. Phys. Rev., E 78, 026303 (2008)

    Article  Google Scholar 

  13. Yeung, P.K., Pope, S.B., Lamorgese, A.G., Donzis, D.A.: Acceleration and dissipation statistics of numerically simulated isotropic turbulence. Phys. Fluids 18, 065103 (2006)

    Article  MathSciNet  Google Scholar 

  14. Pope, S.B.: Lagrangian PDF methods for turbulent flows. Annu. Rev. Fluid Mech. 26, 23 (1994)

    Article  MathSciNet  Google Scholar 

  15. Yeung, P.K.: Lagrangian investigations of turbulence. Annu. Rev. Fluid Mech. 34, 115 (2002)

    Article  MathSciNet  Google Scholar 

  16. Pope, S.B.: PDF methods for turbulent reactive flows. Prog. Energy Combust. Sci. 11, 119 (1985)

    Article  MathSciNet  Google Scholar 

  17. Girimaji, S.S., Pope, S.B.: Material element deformation in isotropic turbulence. J Fluid Mech. 220, 427 (1990)

    Article  Google Scholar 

  18. Girimaji, S.S., Pope, S.B.: A diffusion model for velocity gradients in turbulence. Phys. Fluids, A 2, 242 (1990)

    Article  MATH  Google Scholar 

  19. Vieillefosse, P.: Local interaction between vorticity and shear in a perfect incompressible fluid. J. Phys. (France) 43, 837 (1982)

    MathSciNet  Google Scholar 

  20. Cantwell, B.J.: Exact solution of a restricted Euler equation. Phys. Fluids, A 4, 782 (1992)

    Article  MATH  MathSciNet  Google Scholar 

  21. Martin, J., Ooi, A., Chong, M.S., Soria, J.: Dynamics of the velocity gradient tensor invariants in isotropic turbulence. Phys. Fluids 10, 2336 (1998)

    Article  MATH  MathSciNet  Google Scholar 

  22. Chertkov, M., Pumir, A., Shraiman, B.I.: Lagrangian tetrad dynamics and the phenomenology of turbulence. Phys. Fluids 11, 2394 (1999)

    Article  MATH  MathSciNet  Google Scholar 

  23. Jeong, E., Girimaji, S.S.: Velocity-gradient dynamics in turbulence: Effect of viscosity and forcing. Theor. Comput. Fluid Dyn. 16, 421 (2003)

    Article  MATH  Google Scholar 

  24. Chevillard, L., Meneveau, C.: Lagrangian dynamics and statistical geometric structure of turbulence. Phys. Rev. Lett. 97, 174501 (2006)

    Article  Google Scholar 

  25. Biferale, L., Chevillard, L., Meneveau, C., Toschi, F.: Multi-scale model of gradient evolution in turbulent flows. Phys. Rev. Lett. 98, 214501 (2007)

    Article  Google Scholar 

  26. Guala, M., Liberzon, A., Tsinober, A., Kinzelbach, W.: An experimental investigation on Lagrangian correlations of small-scale turbulence at low Reynolds number. J. Fluid Mech. 574, 405 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  27. Yeung, P.K., Pope, S.B., Kurth, E.A., Lamorgese, A.G.: Lagrangian conditional statistics, acceleration and local relative motion in numerically simulated isotropic turbulence. J. Fluid Mech. 582, 399 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  28. Riley, J.J., Patterson, G.S.: Diffusion experiments with numerically integrated isotopic turbulence. Phys. Fluids 17, 292 (1974)

    Article  MATH  Google Scholar 

  29. She, Z-S., Jackson, E., Sreenivasan, K.R.: Structure and dynamics of homogenous turbulence: models and simulations. Proc. R. Soc. Lond., A 434, 101 (1991)

    Article  MATH  Google Scholar 

  30. Toschi, F., Bodenschatz, E.: Lagrangian properties of particles in turbulence. Annu. Rev. Fluid Mech. 41, 375 (2009)

    Article  MathSciNet  Google Scholar 

  31. Li, Y., Perlman, E., Wan, M., Yang, Y., Burns, R., Meneveau, C., Burns, R., Chen, S., Szalay, A., Eyink, G.: A public turbulence database cluster and applications to study Lagrangian evolution of velocity increments in turbulence. J. Turbul. 9, 31 (2008)

    Article  Google Scholar 

  32. Yeung, P.K., Pope, S.B.: An algorithm for tracking fluid particles in numerical simulations of homogeneous turbulence. J. Comp. Phys. 79, 373 (1988)

    Article  MATH  Google Scholar 

  33. Benzi, R., Biferale, L., Calzavarini, E., Lohse, D., Toschi, F.: Velocity-gradient statistics along particle trajectories in turbulent flows: the refined similarity hypothesis in the Lagrangian frame. Phys. Rev., E 80, 066318 (2009)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Huidan Yu.

Additional information

The authors are delighted to present this paper in the context of a symposium held in celebration of Professor Stephen B. Pope’s pathbreaking contributions to turbulence and combustion research. They thankfully acknowledge the financial support from the Keck Foundation (L. C.) and the National Science Foundation (ITR-0428325 and CDI-0941530).

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yu, H., Meneveau, C. Scaling of Conditional Lagrangian Time Correlation Functions of Velocity and Pressure Gradient Magnitudes in Isotropic Turbulence. Flow Turbulence Combust 85, 457–472 (2010). https://doi.org/10.1007/s10494-010-9256-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10494-010-9256-5

Keywords

Navigation