Skip to main content
Log in

Statistically Steady Incompressible DNS to Validate a New Correlation for Turbulent Burning Velocity in Turbulent Premixed Combustion

  • Published:
Flow, Turbulence and Combustion Aims and scope Submit manuscript

Abstract

Incompressible 3-D DNS is performed in non-decaying turbulence with single step chemistry to validate a new analytical expression for turbulent burning velocity. The proposed expression is given as a sum of laminar and turbulent contributions, the latter of which is given as a product of turbulent diffusivity in unburned gas and inverse scale of wrinkling at the leading edge. The bending behavior of U T at higher u′ was successfully reproduced by the proposed expression. It is due to decrease in the inverse scale of wrinkling at the leading edge, which is related with an asymmetric profile of FSD with increasing u′. Good agreement is achieved between the analytical expression and the turbulent burning velocities from DNS throughout the wrinkled, corrugated and thin reaction zone regimes. Results show consistent behavior with most experimental correlations in literature including those by Bradley et al. (Philos Trans R Soc Lond A 338:359–387, 1992), Peters (J Fluid Mech 384:107–132, 1999) and Lipatnikov et al. (Progr Energ Combust Sci 28:1–74, 2002).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Bradley, D., Lau, A.K.C., Lawes, M.: Flame stretch rate as a determinant of turbulent burning velocity. Philos. Trans. R. Soc. Lond. A 338, 359–387 (1992)

    Article  ADS  Google Scholar 

  2. Peters, N.: The turbulent burning velocity for large-scale and small-scale turbulence. J. Fluid Mech. 384, 107–132 (1999). doi:10.1017/S0022112098004212

    Article  MATH  ADS  Google Scholar 

  3. Lipatnikov, A.N., Chomiak, J.: Turbulent flame speed and thickness:phenomenology, evaluation, and application in multidimensional simulations. Progr. Energ. Combust. Sci. 28, 1–74 (2002). doi:10.1016/S0360-1285(01)00007-7

    Article  Google Scholar 

  4. Zimont, V.L., Mesheriakov, E.A.: A model of combustion of partially premixed gases. In: Structure of Gas Flames. Proceedings of International Colloquium. Part, I.I., Novosivirsk: ITPM SO AN SSSR, pp. 35–43 (1988, in Russian)

  5. Gülder, Ö.L.: Contribution of small scale turbulence to burning velocity of flamelets in the thin reaction zone regime. Proc. Combust. Inst. 31, 1369–1375 (2007). doi:10.1016/j.proci.2006.07.189

    Article  Google Scholar 

  6. Filatyev, S.A., Driscoll, J.F., Carter, C.D., Donbar, J.M.: Measured properties of turbulent premixed flames for model assessment, including burning velocities, stretch rates, and surface densities. Combust. Flame 141, 1–21 (2005). doi:10.1016/j.combustflame.2004.07.010

    Article  Google Scholar 

  7. Cho, P., Law, C.K., Hertzberg, J.R., Cheng, R.K.: Structure and propagation of turbulent premixed flames stabilized in a stagnation flow. Proc. Combust. Inst. 21, 1493–1499 (1988)

    Google Scholar 

  8. Liñán, A., Williams, F.A.: Fundamental Aspects of Combustion. Oxford University Press, New York (1993)

    Google Scholar 

  9. Kolmogorov, A.N., Petrovski, I.G., Piskunov, N.S.: Investigation of the diffusion equation connected with an increasing amount of matter and its application to a biological problem. Bull. MGU A1, 1–26 (1937)

    Google Scholar 

  10. Zeldovich, Y.B., Barenblatt, G.I., Librovich, V.B., Makhviladze, G.M.: The Mathematical Theory of Combustion and Explosion. Consultants Bureau, New York (1985)

    Google Scholar 

  11. Hakberg, B., Gosman, A.D.: Analytical determination of turbulent flame speed from combustion models. Proc. Combust. Inst. 20, 225–232 (1984)

    Google Scholar 

  12. Corvellec, C., Bruel, P., Sabel’Nikov, V.A.: Turbulent premixed flames in the flamelet regime: burning velocity spectral properties in the presence of countergradient diffusion. Combust. Flame 120, 585–588 (2000). doi:10.1016/S0010-2180(99)00120-0

    Article  Google Scholar 

  13. Im, Y.H., Huh, K.Y., Nishiki, S., Hasegawa, T.: Zone conditional assessment of flame-generated turbulence with DNS database of a turbulent premixed flame. Combust. Flame 137, 478–488 (2004). doi:10.1016/j.combustflame.2004.03.006

    Article  Google Scholar 

  14. Lee, E., Im, Y.H., Huh, K.Y.: Zone conditional analysis of a freely propagating one-dimensional turbulent premixed flame. Proc. Combust. Inst. 30, 851–857 (2005). doi:10.1016/j.proci.2004.08.171

    Article  Google Scholar 

  15. Huh, K.Y., Kim, S.H., Kim, S.Y.: Validation of an asymptotic zone conditional expression for turbulent burning velocity against DNS database. In: Proc. of Summer Prog., CTR, Stanford University, pp. 269–282 (2004)

  16. Libby, P.A., Williams, F.A.: Turbulent Reaction Flows. Academic, London (1993)

    Google Scholar 

  17. Sullivan, N.P., Mahalingam, S., Kerr, R.M.: Deterministic forcing of homogeneous, isotropic turbulence. Phys. Fluids 6, 1612–1614 (1994). doi:10.1063/1.868274

    Article  ADS  Google Scholar 

  18. Kennedy, C.A., Carpenter, M.H., Lewis, R.M.: Low-storage, explicit Runge–Kutta schemes for the compressible Navier–Stokes equations. Appl. Numer. Math. 35, 177–219 (2000). doi:10.1016/S0168-9274(99)00141-5

    Article  MATH  MathSciNet  Google Scholar 

  19. Lele, S.K.: Compact finite difference schemes with spectral-like resolution. J. Comput. Phys. 103, 16–42 (1992). doi:10.1016/0021-9991(92)90324-R

    Article  MATH  MathSciNet  ADS  Google Scholar 

  20. Poinsot, T.J., Lele, S.K.: Boundary conditions for direct simulations of compressible viscous flows. J. Comput. Phys. 101, 104–129 (1992). doi:10.1016/0021-9991(92)90046-2

    Article  MATH  MathSciNet  ADS  Google Scholar 

  21. Pope, S.B.: Stochastic lagrangian models for turbulence. Annu. Rev. Fluid Mech. 26, 23–63 (1994). doi:10.1146/annurev.fl.26.010194.000323

    Article  MathSciNet  ADS  Google Scholar 

  22. Fung, J.C.H., Hunt, J.C.R., Malik, N.A., Perkins, R.J.: Kinematic simulation of homogeneous turbulence by unsteady random fourier modes. J. Fluid Mech. 236, 281–318 (1992). doi:10.1017/S0022112092001423

    Article  MATH  MathSciNet  ADS  Google Scholar 

  23. Plessing, T., Kortschik, C., Peters, N., Mansour, M.S., Cheng, R.K.: Measurements of the turbulent burning velocity and the structure of premixed flames on a lowswirl burner. Proc. Combust. Inst. 28, 359–366 (2000)

    Article  Google Scholar 

  24. Kerstein, A.R.: Pair-exchange model of turbulent premixed flame propagation. Proc. Combust. Inst. 21, 1281–1289 (1988)

    Google Scholar 

  25. Weller, H.G., Uslu, S., Gosman, A.D., Maly, R.R., Herweg, R., Heel, B.: Prediction of combustion in homogeneous-charge spark-ignition engines. In: COMODIA 94. Yokohama: JSME, pp. 163–169 (1994)

  26. Klimov, A.M.: Premixed turbulent flames - interplay of hydrodynamic and chemical phenomena. Prog. Astronaut. Aeronaut. 88, 133 (1983)

    Google Scholar 

  27. Cant, R.S., Pope, S.B., Bray, K.N.C.: Modelling of flamelet surface-to-volume ratio in turbulent premixed combustion. Proc. Combust. Inst. 23, 809–815 (1990)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kang Y. Huh.

Additional information

Conference topic: fundamental DNS and LES combustion studies

Type: SI: DNS and LES of reactive flows

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lee, D., Huh, K.Y. Statistically Steady Incompressible DNS to Validate a New Correlation for Turbulent Burning Velocity in Turbulent Premixed Combustion. Flow Turbulence Combust 84, 339–356 (2010). https://doi.org/10.1007/s10494-009-9221-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10494-009-9221-3

Keywords

Navigation