Skip to main content

Advertisement

Log in

Temporal fluctuations in oribatid mites indicate that density-independent factors favour parthenogenetic reproduction

  • Published:
Experimental and Applied Acarology Aims and scope Submit manuscript

Abstract

We investigated the oribatid mite density, community structure and the percentage of parthenogenetic individuals in four different forest types across three regions in Germany in 2008 and once again in 2011. We compared temporal (inter-annual) fluctuations in population densities between sexually and parthenogenetically reproducing species of oribatid mites. We hypothesized that population densities in parthenogenetic oribatid mite species fluctuate more than in sexual ones. Further, we expected species composition and dominance of parthenogenetic species to differ between forest types and regions. Oribatid mite community structure did not differ between years but varied with forest type and region, indicating low species turnover in time. As hypothesized, temporal fluctuations were more pronounced in parthenogenetic as compared to sexual species. The percentage of parthenogenetic individuals was significantly higher in coniferous than in beech forests and significantly higher in Schorfheide-Chorin than in Hainich-Dün and Schwäbische Alb. The results indicate that parthenogenetic species flourish if populations are controlled by density-independent factors and dominate at sites were resources are plentiful and easily available, such as coniferous forests, and in regions with more acidic soils and thick organic layers, such as Schorfheide-Chorin. However, historical factors also may have contributed to the increased dominance of parthenogenetic species in the Schorfheide-Chorin, as this region was more heavily glaciated and this may have favoured parthenogenetic species. Overall, our study supports the hypothesis that parthenogenetic species benefit from the lack of density-dependent population control whereas the opposite is true for sexual species.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Beckmann M (1988) Die Entwicklung der Bodenmesofauna eines Ruderal-Ökosystems und ihre Beeinflussung durch Rekultivierung: 1. Oribatiden (Acari: Oribatei). Pedobiologia 31:391–408

    Google Scholar 

  • Behan-Pelletier VM (1989) Limnozetes (Acari: Oribatida: Limnozetidae) of northeastern North America. Can Entomol 121:453–506

    Article  Google Scholar 

  • Behan-Pelletier VM, Bissett B (1994) Oribatida of Canadian peatlands. Mem Entomol Soc Can 169:73–88

    Article  Google Scholar 

  • Bell G (1982) The masterpiece of nature: the evolution and genetics of sexuality. University of California Press, Berkeley

    Google Scholar 

  • Blair JM, Parmelee RW, Wyman RL (1994) A comparison of the forest invertebrate communities of four types in the northeastern U.S. Pedobiologia 38:146–160

    Google Scholar 

  • Cianciolo JM, Norton RA (2006) The ecological distribution of reproductive mode in oribatid mites, as related to biological complexity. Exp Appl Acarol 40:1–25

    Article  PubMed  Google Scholar 

  • Domes K, Scheu S, Maraun M (2007) Resources and sex: soil re-colonization by sexual and parthenogenetic oribatid mites. Pedobiologia 51:1–11

    Article  Google Scholar 

  • Erdmann G, Floren A, Linsenmair KE, Scheu S, Maraun M (2006) Little effect of forest age on oribatid mites on the bark of trees. Pedobiologia 50:433–441

    Article  Google Scholar 

  • Erdmann G, Scheu S, Maraun M (2012) Regional factors rather than forest type drive the community structure of soil living oribatid mites (Acari, Oribatida). Exp Appl Acarol 57:157–169

    Article  PubMed  PubMed Central  Google Scholar 

  • Farská J, Prejzková K, Starý J, Rusek J (2014) Soil microarthropods in non-intervention montane spruce forest regenerating after bark-beetle outbreak. Ecol Res 29:1087–1096

    Article  Google Scholar 

  • Fisher RA (1930) The genetical theory of natural selection. Clarendon Press, Oxford

    Book  Google Scholar 

  • Fischer BM, Meyer E, Maraun M (2014) Positive correlation of trophic level and proportion of sexual taxa of oribatid mites (Acari: Oribatida) in alpine soil systems. Exp Appl Acarol 63:465–479

    Article  CAS  PubMed  Google Scholar 

  • Fischer BM, Schatz H, Maraun M (2010) Community structure, trophic position and reproductive mode of soil and bark-living oribatid mites in an alpine grassland ecosystem. Exp Appl Acarol 52:221–237

    Article  PubMed  PubMed Central  Google Scholar 

  • Fischer M, Bossdorf O, Gockel S, Hänsel F, Hemp A, Hessenmöller D, Korte G, Nieschulze J, Pfeiffer S, Prati D, Renner S, Schöning I, Schuhmacher U, Wells K, Buscot F, Kalko EKV, Linsenmair KE, Schulze ED, Weisser WW (2010) Implementing large-scale and long-term functional biodiversity research: the biodiversity exploratories. Basic Appl Ecol 11:473–485

    Article  Google Scholar 

  • Hågvar S, Solhøy T, Mong CE (2009) Primary succession of soil mites (Acari) in a Norwegian glacier foreland, with emphasis on oribatid species. Arct Antarct Alp Res 41:219–227

    Article  Google Scholar 

  • Hamilton WD (1980) Sex versus non-sex versus parasite. Oikos 35:282–290

    Article  Google Scholar 

  • Heethoff M, Domes K, Laumann M, Maraun M, Norton RA, Scheu S (2007) High genetic divergences indicate ancient separation of parthenogenetic lineages of the oribatid mite Platynothrus peltifer (Acari, Oribatida). J Evol Biol 20:392–402

    Article  CAS  PubMed  Google Scholar 

  • Illig J, Norton RA, Scheu S, Maraun M (2010) Density and community structure of soil- and bark-dwelling microarthropods along an altitudinal gradient in a tropical montane rainforest. Exp Appl Acarol 52:49–62

    Article  PubMed  PubMed Central  Google Scholar 

  • Jaenike J (1978) A hypothesis to account for the maintenance of sex within populations. Evol Theory 3:191–194

    Google Scholar 

  • Karg W (1967) Synökologische Untersuchungen von Bodenmilben aus forstwirtschaftlich und landwirtschaftlich genutzten Böden. Pedobiologia 7:198–214

    Google Scholar 

  • Klarner B (2013) Changes in trophic structure of decomposer communities with land use in Central European temperate forests. Dissertation, University of Göttingen

  • Lehmitz R, Russell D, Hohberg K, Christian A, Xylander WER (2011) Wind dispersal of oribatid mites as a mode of migration. Pedobiologia 54:201–207

    Article  Google Scholar 

  • Lindberg N, Bengtsson J (2005) Population responses of oribatid mites and collembolans after drought. Appl Soil Ecol 28:163–174

    Article  Google Scholar 

  • Lindo Z, Visser S (2004) Forest floor microarthropod abundance and oribatid mite (Acari: Oribatida) composition following partial and clear-cut harvesting in the mixedwood boreal forest. Can J For Res 34:998–1006

    Article  Google Scholar 

  • Macfadyen A (1961) Improved funnel-type extractors for soil arthropods. J Anim Ecol 30:171–184

    Article  Google Scholar 

  • Maraun M, Scheu S (2000) The structure of oribatid mite communities (Acari, Oribatida): patterns, mechanisms and implications for future research. Ecography 23:374–383

    Article  Google Scholar 

  • Maraun M, Heethoff M, Scheu S, Norton RA, Weigmann G, Thomas RH (2003a) Radiation in sexual and parthenogenetic oribatid mites (Oribatida, Acari) as indicated by genetic divergence of closely related species. Exp Appl Acarol 29:265–277

    Article  PubMed  Google Scholar 

  • Maraun M, Salamon JA, Schneider K, Schaefer M, Scheu S (2003b) Oribatid mite and collembolan diversity, density and community structure in a moder beech forest (Fagus sylvatica): effects of mechanical perturbations. Soil Biol Biochem 35:1387–1394

    Article  CAS  Google Scholar 

  • Maraun M, Norton RA, Ehnes RB, Scheu S, Erdmann G (2012) Positive correlation between density and parthenogenetic reproduction in oribatid mites (Acari) supports the structured resource theory of sexual reproduction. Evol Ecol Res 14:311–323

    Google Scholar 

  • Maraun M, Fronczek S, Marian F, Sandmann D, Scheu S (2013) More sex at higher altitudes: changes in the frequency of parthenogenesis in oribatid mites in tropical montane rain forests. Pedobiologia 56:185–190

    Article  Google Scholar 

  • Maynard Smith J (1968) Evolution in sexual and asexual populations. Am Nat 102:469–473

    Article  Google Scholar 

  • Maynard Smith J (1971) What use is sex? J Theor Biol 30:319–335

    Article  Google Scholar 

  • Muller HJ (1964) The relation of recombination to mutational advance. Mutat Res 1:2–9

    Article  Google Scholar 

  • Mumladze L, Murvanidze M, Maraun M, Salakaia M (2015) Oribatid mite communities along an elevational gradient in Sairme gorge (Caucasus). Exp Appl Acarol 66:41–51

    Article  PubMed  Google Scholar 

  • Norton RA, Behan-Pelletier VM (2009) Suborder Oribatida. In: Krantz GW, Walter DE (eds) A manual of acarology, 3rd edn. Texas Tech University Press, Lubbock, pp 124–232

    Google Scholar 

  • Norton RA, Palmer S (1991) The distribution, mechanisms and evolutionary significance of parthenogenesis in oribatid mites. In: Schuster R, Murphy PW (eds) The Acari: reproduction. Development and Life-History Strategies, Chapman and Hall Publ, London, pp 107–136

    Chapter  Google Scholar 

  • Norton RA, Sillman DY (1985) Impact of oily waste application on the mite community of an arable soil. Exp Appl Acarol 1:287–305

    Article  CAS  Google Scholar 

  • Norton RA, Kethley J, Johnston DE, O’Connor B (1993) Phylogenetic perspectives on genetic systems and reproductive modes of mites. In: Wrensch DL, Ebbert MA (eds) Evolution and diversity of sex ratio in insect and mites. Chapman and Hall Publ, New York, pp 8–99

    Chapter  Google Scholar 

  • Palmer S, Norton RA (1991) Taxonomic, geographic and seasonal distribution of thelytokous parthenogenesis in the desmonomata (Acari: Oribatida). Exp Appl Acarol 12:67–81

    Article  Google Scholar 

  • Ryabinin NA, Pan’kov AN (1987) The role of parthenogenesis in the biology of oribatid mites. Ekologiya (USSR) 4:62–64

    Google Scholar 

  • Schaefer I, Norton RA, Scheu S, Maraun M (2010) Arthropod colonization of land—linking molecules and fossils in oribatid mites (Acari, Oribatida). Mol Phylogenet Evol 57:113–121

    Article  CAS  PubMed  Google Scholar 

  • Scheu S, Drossel B (2007) Sexual reproduction prevails in a world of structured resources in short supply. Proc R Soc B 274:1225–1231

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Segers H (2008) Global diversity of rotifers (Rotifera) in freshwater. Hydrobiologia 595:49–59

    Article  Google Scholar 

  • Šmilauer P, Lepš J (2014) Multivariate analysis of ecological data using CANOCO 5. Cambridge University Press, Cambridge

    Book  Google Scholar 

  • Sylvain ZA, Buddle CM (2010) Effects of forest stand type on oribatid mite (Acari: Oribatida) assemblages in a southwestern Quebec forest. Pedobiologia 53:321–325

    Article  Google Scholar 

  • Walter DE, Proctor HC (2013) Mites: ecology, evolution, and behaviour, 2nd edn. Springer, Berlin

    Book  Google Scholar 

  • Weigmann G (2006) Hornmilben (Oribatida). In: Dahl F (ed) Die Tierwelt Deutschlands 76. Goecke & Evers, Keltern

    Google Scholar 

  • Weismann A (1889) Essays upon heredity and kindred biological problems, translated by Poulton EB, Schonland S, Shipley AE. Clarendon Press, Oxford

  • White MJD (1978) Modes of speciation. Freeman, San Francisco

    Google Scholar 

  • Wilcke W, Oelmann Y, Schmitt A, Valarezo C, Zech W, Homeier J (2008) Soil properties and tree growth along an altitudinal transect in Ecuadorian tropical montane forest. J Plant Nutr Soil Sci 171:220–230

    Article  CAS  Google Scholar 

  • Zaitsev AS, Straalen NM, Berg MP (2013) Landscape geological age explains large scale spatial trends in oribatid mite diversity. Landsc Ecol 28:285–296

    Article  Google Scholar 

Download references

Acknowledgments

We thank the managers of the three Exploratories, Kirsten Reichel-Jung, Swen Renner, Katrin Hartwich, Sonja Gockel, Kerstin Wiesner, and Martin Gorke for their work in maintaining the plot and project infrastructure; Christiane Fischer and Simone Pfeiffer for giving support through the central office, Michael Owonibi for managing the central data base, and Markus Fischer, Eduard Linsenmair, Dominik Hessenmöller, Jens Nieschulze, Daniel Prati, Ingo Schöning, François Buscot, Ernst-Detlef Schulze, Wolfgang W. Weisser and the late Elisabeth Kalko for their role in setting up the Biodiversity Exploratories project. The work has been (partly) funded by the DFG Priority Program 1374 “Infrastructure-Biodiversity-Exploratories” (MA2461/7-2). Field work permits were issued by the responsible state environmental offices of Baden-Württemberg, Thüringen, and Brandenburg (according to § 72BbgNatSchG). We thank Georgia Erdmann, Bernhard Eitzinger, Bernhard Klarner, Olga Ferlian for assistance in the field.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Christian Bluhm.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bluhm, C., Scheu, S. & Maraun, M. Temporal fluctuations in oribatid mites indicate that density-independent factors favour parthenogenetic reproduction. Exp Appl Acarol 68, 387–407 (2016). https://doi.org/10.1007/s10493-015-0001-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10493-015-0001-6

Keywords

Navigation