Skip to main content

Advertisement

Log in

Oribatid mite communities along an elevational gradient in Sairme gorge (Caucasus)

  • Published:
Experimental and Applied Acarology Aims and scope Submit manuscript

Abstract

Many aboveground animals and plant communities have been studied along elevational gradients whereas studies on soil animals are scarce. Here, we studied oribatid mite community distribution along an elevational gradient from 600 to 2200 m in forest ecosystems of the Western Lesser Caucasus Mountains in Georgia. Overall, 86 oribatid mite species were found at the study sites. Oribatid mite densities were generally low (~9800 ind./m2), and 74 % of all species reproduced sexually indicating that resource conditions at the study sites are generally poor. Oribatids mainly comprised Brachypylina (76 %), Mixonomata (13 %), Desmonomata (6 %) and Enarthronota (5 %). Oribatid mite community structure changed along the elevational gradient and the changes correlated with temperature, pH, litter thickness and density of the herb layer. The dominance of sexually reproducing taxa and low overall abundance indicate that the studied elevational gradient is characterized by poor resource conditions for soil microarthropods. Oribatid mite species richness and density declined with elevation suggesting that decreasing temperature in concert with resource limitation is a main driver of oribatid mite communities whereas stochastic factors (such as mid-domain effects) are of minor importance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Adams J (2009) Species richness: patterns in the diversity of life. Springer, Chichester

    Book  Google Scholar 

  • Andrew NR, Rodgerson L, Dunlop M (2003) Variation in invertebrate–bryophyte community structure at different spatial scales along altitudinal gradients. J Biogeogr 30:731–746

    Article  Google Scholar 

  • Arabuli T, Murvanidze M, Kvavadze E (2004) Distribution of oribatid mites (Acari, Oribatida) by phytocenosis (Tsiv-Gombori Range, East Georgia). Proc Inst Zool 22:80–88

    Google Scholar 

  • Cianciolo JM, Norton RA (2006) The ecological distribution of reproductive mode in oribatid mites, as related to biological complexity. Exp Appl Acarol 40:1–25

    Article  PubMed  Google Scholar 

  • Coleman D, Crossley J, Hendrix P (2004) Fundamentals of soil ecology, 2nd edn. Academic Press, San-Diego

    Google Scholar 

  • Colwell RK (2008) RangeModel: tools for exploring and assessing geometric constraints on species richness (the mid-domain effect) along transects. Ecography 31:4–7

    Article  Google Scholar 

  • Colwell RK, Hurtt GC (1994) Nonbiological gradients in species richness and a spurious Rapoport effect. Am Nat 144:570–595

    Article  Google Scholar 

  • Currie D, Kerr J (2008) Tests of the mid-domain hypothesis: a review of the evidence. Ecol Monogr 78:3–18

    Article  Google Scholar 

  • Davudova EZ (2013) Pancirnie kleshchi (Acariformes, Oribatida) irganaiskoi kotlovini vnutrennego gornogo Dagestana (fauna, ecologia, zoogeographia). Dissertation, Daghestan State University

  • Dolukhanov A (2010) Forest vegetation of Georgia. Universal, Tbilisi

    Google Scholar 

  • Domes K, Scheu S, Maraun M (2007) Resources and sex: soil recolonization by sexual and parthenogenetic oribatid mites. Pedobiologia 51:1–11

    Article  Google Scholar 

  • Domes-Wehner K (2009) Parthenogenesis and sexuality in oribatid mites: Phylogeny, mitochondrial genome structure and resource dependence. Dissertation, Technischen Universität Darmstadt

  • Fischer BM, Schatz H (2013) Biodiversity of oribatid mites (Acari: Oribatida) along an altitudinal gradient in the Central Alps. Zootaxa 3626:429–454

    Article  Google Scholar 

  • Fischer B, Schatz H, Maraun M (2010) Community structure, trophic position and reproductive mode of soil and bark-living oribatid mites in an alpine grassland ecosystem. Exp Appl Acarol 52:221–237

    Article  PubMed Central  PubMed  Google Scholar 

  • Fischer A, Blaschke M, Bässler C (2011) Altitudinal gradients in biodiversity research: the state of the art and future perspectives under climate change aspects. For Ecol Landsc Nat Conserv Res 11:35–47

    Google Scholar 

  • Fischer BM, Meyer E, Maraun M (2014) Positive correlation of trophic level and proportion of sexual taxa of oribatid mites (Acari: Oribatida) in alpine soil systems. Exp Appl Acarol 63:465–479

    Article  CAS  PubMed  Google Scholar 

  • Gaston KJ (2000) Global patterns in biodiversity. Nature 405:220–227

    Article  CAS  PubMed  Google Scholar 

  • Gerritsen J (1980) Sex and parthenogenesis in sparse populations. Am Nat 115:718–742

    Article  Google Scholar 

  • Ghilarov MS, Krivolutsky DA (1975) Identification key of soil dwelling mites. Sarcoptiformes, Nauka

    Google Scholar 

  • Ghobad-Nejhad M, Hallenberg N (2012) The Caucasian corticioid fungi: level of endemism, similarity, and possible contribution to European fungal diversity. Fungal Divers 52:35–48

    Article  Google Scholar 

  • Glesener R, Tilman D (1978) Sexuality and the components of environmental uncertainty: clues from geographic parthenogenesis in terrestrial animals. Am Nat 112:659–673

    Article  Google Scholar 

  • Guo Q, Kelt DA, Sun Z et al (2013) Global variation in elevational diversity patterns. Sci Rep 3:3007

    PubMed  Google Scholar 

  • Hasegawa M, Ito MT, Kitayama K (2006) Community structure of oribatid mites in relation to elevation and geology on the slope of Mount Kinabalu, Sabah, Malaysia. Eur J Soil Biol 42:S191–S196

    Article  Google Scholar 

  • Hijmans RJ, Cameron SE, Parra JL et al (2005) Very high resolution interpolated climate surfaces for global land areas. Int J Climatol 25:1965–1978

    Article  Google Scholar 

  • Illig J, Schatz H (2008) Decomposition and colonization by micro-arthropods of two litter types in a tropical montane rain forest in southern Ecuador. J Trop Ecol 24:157–167

    Article  Google Scholar 

  • Illig J, Norton RA, Scheu S, Maraun M (2010) Density and community structure of soil- and bark-dwelling microarthropods along an altitudinal gradient in a tropical montane rainforest. Exp Appl Acarol 52:49–62

    Article  PubMed Central  PubMed  Google Scholar 

  • Jing S, Solhøy T, Huifu W et al (2005) Differences in soil arthropod communities along a high altitude gradient at Shergyla Mountain, Tibet, China. Arctic Antarct Alp Res 37:261–266

    Article  Google Scholar 

  • Jongman R, Ter Braak C, Van Tongeren O (1995) Data analysis in community and landscape ecology. Cambridge University Press, Cambridge

    Book  Google Scholar 

  • Kearney M (2005) Hybridization, glaciation and geographical parthenogenesis. Trends Ecol Evol 20:495–502

    Article  PubMed  Google Scholar 

  • Kessler M, Kluge J, Hemp A, Ohlemüller R (2011) A global comparative analysis of elevational species richness patterns of ferns. Glob Ecol Biogeogr 20:868–880

    Article  Google Scholar 

  • Körner C (2000) Why are there global gradients in species richness? Mountains might hold the answer. Trends Ecol Evol 19:513–514

    Article  Google Scholar 

  • Lamoncha K, Crossley DC Jr (1998) Oribatid mite diversity along an elevation gradient in a southeastern Appalachian forest. Pedobiologia 42:43–55

    Google Scholar 

  • Leuschner C, Moser G, Bertsch C (2007) Large altitudinal increase in tree root/shoot ratio in tropical mountain forests of Ecuador. Basic Appl Ecol 8:219–230

    Article  Google Scholar 

  • Lomolino M (2001) Elevation gradients of species-density: historical and prospective views. Glob Ecol Biogeogr 10:3–13

    Article  Google Scholar 

  • Lomolino M, Riddle B, Brown J (2006) Biogeography. Sinauer Associates, Sunderland

    Google Scholar 

  • Maraun M, Scheu S (2000) The structure of oribatid mite communities (Acari, Oribatida): patterns, mechanisms and implications for future research. Ecography 23:374–382

    Article  Google Scholar 

  • Maraun M, Salamon J, Schneider K et al (2003) Oribatid mite and collembolan diversity, density and community structure in a moder beech forest (Fagus sylvatica): effects of mechanical perturbations. Soil Biol Biochem 35:1387–1394

    Article  CAS  Google Scholar 

  • Maraun M, Illig J, Sandman D et al (2008) Soil Fauna. In: Beck E, Benedix J, Kottke I et al (eds) Gradients in a tropical mountain ecosystem of Ecuador. Springer, Berlin, pp 181–193

    Chapter  Google Scholar 

  • Maraun M, Erdmann G, Schulz G et al (2009) Multiple convergent evolution of arboreal life in oribatid mites indicates the primacy of ecology. Proc Biol Sci 276:3219–3227

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Maraun M, Norton RA, Ehnes RB et al (2012) Positive correlation between density and parthenogenetic reproduction in oribatid mites (Acari) supports the structured resource theory of sexual reproduction. Evol Ecol Res 14:311–323

    Google Scholar 

  • Maraun M, Fronczek S, Marian F et al (2013) More sex at higher altitudes: changes in the frequency of parthenogenesis in oribatid mites in tropical montane rain forests. Pedobiologia 56:185–190

    Article  Google Scholar 

  • Mittermeier RAA, Gil PR, Hoffman M et al (2004) Hotspots Revisited: Earth’s biologically richest and most endangered ecoregions. CEMEX/Agrupacion Sierra Madre, Sierra Madre

    Google Scholar 

  • Mori A, Shiono T, Koide D (2013) Community assembly processes shape an altitudinal gradient of forest biodiversity. Glob Ecol Biogeogr 22:878–888

    Article  Google Scholar 

  • Mumladze L, Murvanidze M, Behan-Pelletier V (2013) Compositional patterns in Holarctic peat bog inhabiting oribatid mite (Acari: Oribatida) communities. Pedobiologia 56:41–48

    Article  Google Scholar 

  • Murvanidze M, Kvavadze E (2009) Oribatid mites, the main decomposers of bogs of Colchic Lowland (Caucasus, Georgia). In: Sabelis M, Bruin J (ed) Proceeding of the XII congress of acarology, pp 175–178

  • Murvanidze M, Kvavadze E, Jgenti L (2004) Oribatid mites (Acari, Oribatei) of Ajara (Caucasus, Georgia) and their vertical-zonal distribution. Proc Inst Zool Tbilisi 22:89–102

    Google Scholar 

  • Murvanidze M, Kvavadze E, Mmumladze L, Arabuli T (2011) Landscape distribution of oribatid mites (Acari, Oribatida) in Kolkheti National Park (Georgia, Caucasus). Zoosymposia 6:202–214

    Google Scholar 

  • Nakhutsrishvili G (2013) The Vegetation of Georgia (South Caucasus), 2nd edn. Springer, Berlin

    Book  Google Scholar 

  • Neidze V (2003) Sakartvelos sotsialur-ekonomikuri geografia (Social-economic geography of Georgia). Metsniereba, Tbilisi

    Google Scholar 

  • Norton RA, Kethley JB, Johnston DE, O’Connor BM (1993) Phylogenetic perspectives on genetic systems and reproductive modes of mites. In: Wrensch DL, Ebbert MA (eds) Evolution and diversity of sex ratio in insects and mites. Chapman & Hall, New York, pp 8–99

    Chapter  Google Scholar 

  • Olson DM (1994) The distribution of leaf litter invertebrates along a Neotropical altitudinal gradient. J Trop Ecol 10:129–150

    Article  Google Scholar 

  • Pokryszko BM, Cameron RAD, Mumladze L, Tarkhnishvili D (2011) Forest snail faunas from Georgian Transcaucasia : patterns of diversity in a Pleistocene refugium. Biol J Linn Soc 102:239–250

    Article  Google Scholar 

  • Rahbek C (1995) The elevational gradient of species richness: a uniform pattern? Ecography 18:200–205

    Article  Google Scholar 

  • Rahbek C (2005) The role of spatial scale and the perception of large-scale species-richness patterns. Ecol Lett 8:224–239

    Article  Google Scholar 

  • Rohde K (1992) Latitudinal gradients in species diversity: the search for the primary cause. Oikos 65:514–527

    Article  Google Scholar 

  • Romdal TS, Grytnes J (2007) An indirect area effect on elevational species richness patterns. Ecography 30:440–448

    Article  Google Scholar 

  • Schatz H (1978) Oribatiden-Gemeinschaften (Acari: Oribatei) oberhalb der Waldgrenze im Raum Obergurgl (Tirol, Österreich). Berichte des naturwissenschaftlich-medizinischen Vereins Innsbruck, 65:55–72

  • Scheu S, Drossel B (2007) Sexual reproduction prevails in a world of structured resources in short supply. Proc Biol Sci 274:1225–1231

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Schneider K, Renker C, Scheu S, Maraun M (2004a) Feeding biology of oribatid mites: a minireview. Phytophaga 16:247–256

    Google Scholar 

  • Schneider K, Migge S, Norton RA, Scheu S, Langel R, Reineking A, Maraun M (2004b) Trophic niche differentiation in soil microarthropods (Oribatida, Acari): evidence from stable isotope ratios (15N/14N). Soil Biol Biochem 36:1769–1774

    Article  CAS  Google Scholar 

  • Shatilova I, Mchedlishvili N, Rukhadze L, Kvavadze E (2011) The history of the flora and vegetation of Georgia (South Caucasus). Georgian National Museum, Tbilisi

    Google Scholar 

  • Shtanchaeva UY (2003) Structure of soil-dwelling microarthropod communities (Collembola, Oribatida) in Mountainous Daghestan. Russ J Zool 82:665–671

    Google Scholar 

  • Song Y, Scheu S, Drossel B (2011) Geographic parthenogenesis in a consumer-resource model for sexual reproduction. J Theor Biol 273:55–62

    Article  PubMed  Google Scholar 

  • Song Y, Scheu S, Drossel B (2012) The ecological advantage of sexual reproduction in multicellular long-lived organisms. J Evol Biol 25:556–565

    Article  CAS  PubMed  Google Scholar 

  • Tarba ZM (1993) Population structure of the oribatid mites in the vertical landscape zones of Abkhazia. Russ J Zool 72:22–27

    Google Scholar 

  • Ter Braak C, Smilauer P (2002) CANOCO reference manual and CanoDraw for Windows user’s guide: software for canonical community ordination (version 4.5). Microcomputer Power Ithaca, New York

    Google Scholar 

  • Wehner K, Scheu S, Maraun M (2014) Resource availability as arriving a actor of the reproductive mode in soil microarthropods (Acari, Oribatida). PLoS One 9(8):e104243

    Article  PubMed Central  PubMed  Google Scholar 

  • Weigmann G (2006) Hornmilben (Oribatida). Die Tierwelt Deutschlands. 6 Teil. Goecke and Evers, Keltern

    Google Scholar 

  • Willig MR, Kaufman DM, Stevens RD (2003) Latitudinal gradients of biodiversity: pattern, process, scale, and synthesis. Annu Rev Ecol Evol Syst 34:273–309

    Article  Google Scholar 

  • Zaitsev AS, Straalen NM, Berg MP (2013) Landscape geological age explains large scale spatial trends in oribatid mite diversity. Landsc Ecol 28:285–296

    Article  Google Scholar 

  • Zapata FA, Gaston KJ, Chown SL (2003) Mid-domain models of species richness gradients: assumptions, methods and evidence. J Anim Ecol 72:677–690

    Article  Google Scholar 

Download references

Acknowledgments

The field work of L. Mumladze was supported by the DAAD (Deutscher Akademischer Austausch Dienst) foundation. We would like to thank Zezva Asanidze for helping in the field work and Mary Shalamberidze for measuring of soil pH (students of Ilia State University). We thank Prof. Stefan Scheu and reviewers for useful comments and suggestions on the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Levan Mumladze.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mumladze, L., Murvanidze, M., Maraun, M. et al. Oribatid mite communities along an elevational gradient in Sairme gorge (Caucasus). Exp Appl Acarol 66, 41–51 (2015). https://doi.org/10.1007/s10493-015-9893-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10493-015-9893-4

Keywords

Navigation