Skip to main content
Log in

Comparison of thermal activity thresholds of the spider mite predators Phytoseiulus macropilis and Phytoseiulus persimilis (Acari: Phytoseiidae)

  • Published:
Experimental and Applied Acarology Aims and scope Submit manuscript

Abstract

The lower and upper thermal activity thresholds of the predatory mite Phytoseiulus macropilis Banks (Acari: Phytoseiidae) were compared with those of its prey Tetranychus urticae Koch (Acari: Tetranychidae) and one of the alternative commercially available control agents for T. urticae, Phytoseiulus persimilis Athias-Henriot. Adult female P. macropilis retained ambulatory function (CTmin) and movement of appendages (chill coma) at significantly lower temperatures (8.2 and 0.4 °C, respectively) than that of P. persimilis (11.1 and 3.3 °C) and T. urticae (10.6 and 10.3 °C). As the temperature was raised, P. macropilis ceased walking (CTmax) and entered heat coma (42.7 and 43.6 °C), beyond the upper locomotory limits of P. persimilis (40.0 and 41.1 °C), but before T. urticae (47.3 and 48.7 °C). Walking speeds were investigated and P. persimilis was found to have significantly faster ambulation than P. macropilis and T. urticae across a range of temperatures. The lower thermal activity threshold data indicate that P. macropilis will make an effective biological control agent in temperate climates.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  • Addo-Bediako A, Chown SL, Gaston KJ (2000) Thermal tolerance, climatic variability and latitude. Proc R Soc B 267:739–745

    Article  CAS  PubMed  Google Scholar 

  • Allen C (2010) Thermal biology and behaviour of two predatory phytoseiid mites: Amblyseius swirskii and Phytoseiulus longipes. Ph.D Thesis, University of Birmingham

  • Bale JS, van Lenteren JC, Bigler F (2008) Biological control and sustainable food production. Phil Trans R Soc B 363:761–776

    Article  CAS  PubMed  Google Scholar 

  • Bigler F, Bale JS, Cock MJW, Dreyer H, Greatrex R, Kuhlmann U, Loomans AJM, van Lenteren JC (2005) Guidelines on information requirements for import and release of invertebrate biological control agents in European countries. Biocontrol News Info 26:115N–123N

    Google Scholar 

  • Clifford Cohen A (1965) Maximum likelihood estimation in the Weibull distribution based on complete and on censored samples. Technometrics 7:579–588

    Article  Google Scholar 

  • Cock MJW, van Lenteren JC, Brodeur J, Barratt BIP, Bigler F, Bolckmans K, Cônsoli FL, Haas F, Mason PG, Parra JRP (2010) Do new access and benefit sharing procedures under the convention on biological diversity threaten the future of biological control? Biocontrol 55:199–218

    Article  Google Scholar 

  • Colfer RG, Rosenheim JA, Godfrey LD, Hsu CL (2003) Interactions between the augmentatively released predaceous mite Galendromus occidentalis (Acari: Phytoseiidae) and naturally occurring generalist predators. Environ Entomol 32:840–852

    Article  Google Scholar 

  • Cowles RB, Bogert CM (1944) A preliminary study of the thermal requirements of desert reptiles. Bull Am Mus Nat Hist 83:261–296

    Google Scholar 

  • Croft BA, MacRae IV (1992) Biological control of apple mites by mixed populations of Metaseiulus occidentalis (Nesbitt) and Typhlodromus pyri Scheuten (Acari: Phytoseiidae). Environ Entomol 21:202–209

    Google Scholar 

  • Croft BA, Zhang Z-Q (1994) Walking, feeding and intraspecific interaction of larvae of Metaseiulus occidentalis, Typhlodromus pyri, Neoseiulus fallacis and Amblyseius andersoni held with and without eggs of Tetranychus urticae. Exp Appl Acarol 18:567–580

    Article  Google Scholar 

  • Dahlgaard J, Hoffman AA (2000) Stress resistance and environmental dependency of inbreeding depression in Drosophila melanogaster. Conserv Biol 14:1187–1192

    Article  Google Scholar 

  • Dahlgaard J, Loeschcke V (1997) Effects of inbreeding in three life stages of Drosophila buzzatii after embryos were exposed to a high temperature stress. Heredity 78:410–416

    Article  PubMed  Google Scholar 

  • Dahlgaard J, Krebs RA, Loeschcke V (1995) Heat-shock tolerance and inbreeding in Drosophila buzzatii. Heredity 74:157–163

    Article  PubMed  Google Scholar 

  • Fields PA (2001) Review: protein function at thermal extremes: balancing stability and flexibility. Comp Biochem Physiol A 129:417–431

    Article  CAS  Google Scholar 

  • Hart AJ, Bale JS, Tullett AG, Worland MR, Walters KFA (2002) Effects of temperature on the establishment potential of the predatory mite Amblyseius californicus McGregor (Acari: Phytoseiidae) in the UK. J Insect Physiol 48:593–599

    Article  CAS  PubMed  Google Scholar 

  • Hatherly IS, Hart AJ, Tullett AG, Bale JS (2005) Use of thermal data as a screen for the establishment potential of non-native biological control agents in the UK. Biocontrol 50:687–698

    Article  Google Scholar 

  • Hazel JR (1995) Thermal adaptation in biological membranes: is homeoviscous adaptation the explanation? Ann Rev Physiol 57:19–42

    Article  CAS  Google Scholar 

  • Hazell SP, Bale JS (2011) Low temperature thresholds: are chill coma and CTmin synonymous? J Insect Physiol 57:1085–1089

    Article  CAS  PubMed  Google Scholar 

  • Hazell SP, Pedersen BP, Worland R, Blackburn TM, Bale JS (2008) A method for the rapid measurement of thermal tolerance traits in studies of small insects. Physiol Entomol 33:384–389

    Article  Google Scholar 

  • Hazell SP, Groutides C, Neve BP, Blackburn TM, Bale JS (2010) A comparison of low temperature tolerance traits between closely related aphids from the tropics, temperate zone, and Arctic. J Insect Physiol 56:115–122

    Article  CAS  PubMed  Google Scholar 

  • Heinrich B (1981) Insect thermoregulation. Wiley, USA

    Google Scholar 

  • Hochachka PW, Somero GN (1984) Biochemical adaptation. Princeton University Press, USA

    Google Scholar 

  • Hughes GE, Bale JS, Sterk G (2009) Thermal biology and establishment potential in temperate climates of the predatory mirid Nesidiocoris tenuis. Biocontrol 54:785–795

    Article  Google Scholar 

  • Hughes GE, Alford L, Sterk G, Bale JS (2010a) Thermal activity thresholds of the predatory mirid Nesidiocoris tenuis: implications for its efficacy as a biological control agent. Biocontrol 55:493–501

    Article  Google Scholar 

  • Hughes GE, Owen E, Sterk G, Bale JS (2010b) Thermal activity thresholds of the parasitic wasp Lysiphlebus testaceipes and its aphid prey: implications for the efficacy of biological control. Physiol Entomol 35:373–378

    Article  Google Scholar 

  • Janssen A, Pallini A, Venzon M, Sabelis MW (1999) Absence of odour-mediated avoidance of heterospecific competitors by the predatory mite Phytoseiulus persimilis. Entomol Exp Appl 92:73–82

    Article  Google Scholar 

  • Krips OE, Kleijn PW, Willems PEL, Gols GJZ, Dicke M (1999) Leaf hairs influence searching efficacy and predation rate of the predatory mite Phytoseiulus persimilis (Acari: Phytoseiidae). Exp Appl Acarol 23:119–131

    Article  Google Scholar 

  • Kristensen TN, Loeschcke V, Bilde T, Hoffman AA, Sgró C, Noreikienė K, Ondrésik M, Bechsgaard JS (2011) No inbreeding depression for low temperature developmental acclimation across multiple Drosophila species. Evolution 65:3195–3201

    Article  PubMed  Google Scholar 

  • Le Lann C, Roux O, Serain N, Van Alphen JJM, Vernon P, Van Baaren J (2011) Thermal tolerance of sympatric hymenopteran parasitoid species: does it match seasonal activity? Physiol Entomol 36:21–28

    Article  Google Scholar 

  • Loughner R, Wentworth K, Loeb G, Nyrop J (2010) Leaf trichomes influence predatory mite densities through dispersal behaviour. Entomol Exp Appl 134:78–88

    Article  Google Scholar 

  • MacMillan HA, Sinclair BJ (2011) Mechanisms underlying insect chill-coma. J Insect Physiol 57:12–20

    Article  CAS  PubMed  Google Scholar 

  • Marshall DB, Lester PJ (2001) The transfer of Typhlodromus pyri on grape leaves for biological control of Panonychus ulmi (Acari: Phytoseiidae, Tetranychidae) in vineyards in Ontario, Canada. Biol Control 20:228–235

    Article  Google Scholar 

  • McClay AS, Balciunas JK (2005) The role of pre-release efficacy assessment in selecting classical biological control agents for weeds—applying the Anna Karenina principle. Biol Control 35:197–207

    Article  Google Scholar 

  • McMurtry JA, Croft BA (1997) Life-styles of phytoseiid mites and their roles in biological control. Ann Rev Entomol 42:291–321

    Article  CAS  Google Scholar 

  • Mellanby K (1939) Low temperature and insect activity. Proc R Soc B 127:473–487

    Article  Google Scholar 

  • Moraes GJ, McMurtry JA, Denmark HA, Campos CB (2004) A revised catalogue of the mite family Phytoseiidae. Zootaxa 1:434–494

    Google Scholar 

  • Neven LG (2000) Physiological responses of insects to heat. Postharvest Biol Technol 21:103–111

    Article  CAS  Google Scholar 

  • Nilson TL, Sinclair BJ, Roberts SP (2006) The effects of carbon dioxide anesthesia and anoxia on rapid cold-hardening and chill coma recovery in Drosophila melanogaster. J Insect Phys 52:1027–1033

    Article  CAS  Google Scholar 

  • Nyamukondiwa C, Terblanche JS (2010) Within-generation variation of critical thermal limits in adult Mediterranean and Natal fruit flies Ceratitis capitata and Ceratitis rosa: thermal history affects short-term responses to temperature. Physiol Entomol 35:255–264

    Article  Google Scholar 

  • OECD (2004) Guidance for information requirements for regulation of invertebrates as biological control agents (IBCAs). OECD Environment, Health and Safety Publications. Series on Pesticides 21. 22 pp

  • Oliveira H, Janssen A, Pallini A, Venzon M, Fadini M, Duarte V (2007) A phytoseiid predator from the tropics as potential biological control agent for the spider mite Tetranychus urticae Koch (Acari: Tetranychidae). Biol Control 42:105–109

    Article  Google Scholar 

  • Oliveira H, Fadini MAM, Venzon M, Rezende D, Rezende F, Pallini A (2008) Evaluation of the predatory mite Phytoseiulus macropilis Banks (Acari: Phytoseiidae) as a biological control agent of the two-spotted spider mite on strawberry plants under greenhouse conditions. Exp Appl Acarol 47:275–283

    Article  PubMed  Google Scholar 

  • Renault D, Hance T, Vannier G, Vernon P (2003) Is body size an influential parameter in determining the duration of survival at low temperatures in Alphitobius diaperinus Panzer (Coleoptera: Tenebrionidae)? J Zool 259:381–388

    Article  Google Scholar 

  • Renault D, Vernon P, Vannier G (2005) Critical thermal maximum and body water loss in first instar larvae of three Cetoniidae species (Coleoptera). J Therm Biol 30:611–617

    Article  Google Scholar 

  • Shaw RH, Bryner S, Tanner R (2009) The life history and host range of the Japanese knotweed psyllid, Aphalara itadori Shinji: potentially the first classical biological weed control agent for the European Union. Biol Control 49:105–113

    Article  Google Scholar 

  • Shimoda T (2010) A key volatile infochemical that elicits a strong olfactory response of the predatory mite Neoseiulus californicus, an important natural enemy of the two-spotted spider mite Tetranychus urticae. Exp Appl Acarol 50:9–22

    Article  CAS  PubMed  Google Scholar 

  • Sime KR, Daane KM, Messing RM, Johnson MW (2006) Comparison of two laboratory cultures of Psyttalia concolor (Hymenoptera: Braconidae), as a parasitoid of the olive fruit fly. Biol Control 39:248–255

    Article  Google Scholar 

  • Tullett AG, Hart AJ, Worland MR, Bale JS (2004) Assessing the effects of low temperature on the establishment potential in Britain of the non-native biological control agent Eretmocerus eremicus. Physiol Entomol 29:363–371

    Article  Google Scholar 

  • Van Haren RJF, Steenhuis MM, Sabelis MW, De Ponti OMB (1987) Tomato stem trichomes and dispersal success of Phytoseiulus persimilis relative to its prey Tetranychus urticae. Exp Appl Acarol 3:115–121

    Article  Google Scholar 

  • van Lenteren JC, Woets J (1988) Biological and integrated pest control in greenhouses. Ann Rev Entomol 33:239–269

    Google Scholar 

  • van Lenteren JC, Babendreier D, Bigler F, Burgio G, Hokkanen HMT, Kuske S, Loomans AJM, Menzler-Hokkanen I, Van Rijn PCJ, Thomas MB, Tommasini MG, Zeng Q–Q (2003) Environmental risk assessment of exotic natural enemies used in inundative biological control. Biocontrol 48:3–38

    Article  Google Scholar 

  • van Lenteren JC, Bale J, Bigler F, Hokkanen HMT, Loomans AJM (2006) Assessing risks of releasing exotic biological control agents of arthropod pests. Ann Rev Entomol 51:609–634

    Article  Google Scholar 

  • Veerman A (1992) Diapause in phytoseiid mites: a review. Exp Appl Acarol 14:1–60

    Article  Google Scholar 

Download references

Acknowledgments

Megan Coombs was funded by the Biotechnology and Biological Sciences Research Council (BBSRC) in a CASE studentship with Biobest Belgium. Many thanks go to Dr. Yves Arijs (Biobest) for support and supply of mites, and Dr. Lucy Alford for her statistics advice.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Megan R. Coombs.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Coombs, M.R., Bale, J.S. Comparison of thermal activity thresholds of the spider mite predators Phytoseiulus macropilis and Phytoseiulus persimilis (Acari: Phytoseiidae). Exp Appl Acarol 59, 435–445 (2013). https://doi.org/10.1007/s10493-012-9619-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10493-012-9619-9

Keywords

Navigation