Skip to main content
Log in

Regular Behaviours with Names

On Rational Fixpoints of Endofunctors on Nominal Sets

  • Published:
Applied Categorical Structures Aims and scope Submit manuscript

Abstract

Nominal sets provide a framework to study key notions of syntax and semantics such as fresh names, variable binding and α-equivalence on a conveniently abstract categorical level. Coalgebras for endofunctors on nominal sets model, e.g., various forms of automata with names as well as infinite terms with variable binding operators (such as λ-abstraction). Here, we first study the behaviour of orbit-finite coalgebras for functors \(\bar F\) on nominal sets that lift some finitary set functor F. We provide sufficient conditions under which the rational fixpoint of \(\bar F\), i.e. the collection of all behaviours of orbit-finite \(\bar F\)-coalgebras, is the lifting of the rational fixpoint of F. Second, we describe the rational fixpoint of the quotient functors: we introduce the notion of a sub-strength of an endofunctor on nominal sets, and we prove that for a functor G with a sub-strength the rational fixpoint of each quotient of G is a canonical quotient of the rational fixpoint of G. As applications, we obtain a concrete description of the rational fixpoint for functors arising from so-called binding signatures with exponentiation, such as those arising in coalgebraic models of infinitary λ-terms and various flavours of automata.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Adámek, J.: Introduction to coalgebra. Theory Appl. Categ. 14, 157–199 (2005)

    MathSciNet  MATH  Google Scholar 

  2. Adámek, J., Levy, P., Milius, S., Moss, L., Sousa, L.: On final coalgebras of power-set functors and saturated trees. Appl. Categ. Struct. 23, 609–641 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  3. Adámek, J., Milius, S.: Terminal coalgebras and free iterative theories. Inf. Comput. 204, 1139–1172 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  4. Adámek, J., Milius, S., Velebil, J.: Iterative algebras at work. Math. Struct. Comput. Sci. 16(6), 1085–1131 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  5. Adámek, J., Rosický, J.: Locally presentable and accessible categories. Cambridge University Press (1994)

  6. Barr, M.: Terminal coalgebras in well-founded set theory. Theoret. Comput. Sci. 114, 299–315 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  7. Bartels, F.: On Generalised Coinduction and Probabilistic Specification Formats: Distributive Laws in Coalgebraic Modelling. PhD thesis, Vrije Universiteit Amsterdam (2004)

    Google Scholar 

  8. Bonsangue, M., Milius, S., Silva, A.: Sound and complete axiomatizations of coalgebraic language equivalence. ACM Trans. Comput. Log. 14(1:7), 52 (2013)

    MathSciNet  MATH  Google Scholar 

  9. Courcelle, B.: Fundamental properties of infinite trees. Theoret. Comput. Sci. 25, 95–169 (1983)

    Article  MathSciNet  MATH  Google Scholar 

  10. Elgot, C.: Monadic computation and iterative algebraic theories. In: Rose, H., Sheperdson, J. (eds.) Monadic Logic Colloquium 1973, vol. 80, pp. 175–230 North Holland (1975)

  11. Gabbay, M., Pitts, A.: A new approach to abstract syntax involving binders. In: Logic in Computer Science, LICS 1999, pp. 214–224. IEEE (1999)

  12. Gabbay, M., Pitts, A. M.: A new approach to abstract syntax involving binders. In: Logic in Computer Science, LICS 1999, pp. 214–224. IEEE Computer Society Press (1999)

  13. Gabriel, P., Ulmer, F.: Lokal präsentierbare Kategorien, vol. 221 of Lect.Notes Math Springer (1971)

  14. Gaducci, F., Miculan, M., Montanari, U.: About permutation algebras, (pre)sheaves and named sets. Higher-order Symb Comput. 19, 283–304 (2006)

    Article  MATH  Google Scholar 

  15. Ginali, S.: Regular trees and the free iterative theory. J. Comput. Syst. Sci. 18, 228–242 (1979)

    Article  MathSciNet  MATH  Google Scholar 

  16. Jacobs, B., Rutten, J.: A tutorial on (co)algebras and (co)induction. EATCS Bulletin 62, 62–222 (1997)

    MATH  Google Scholar 

  17. Johnstone, P.: Adjoint lifting theorems for categories of algebras. Bull. Lond. Math. Soc. 7, 294–297 (1975)

    Article  MathSciNet  MATH  Google Scholar 

  18. Joyal, A.: Une théorie combinatoire des séries formelles. Adv. Math. 42, 1–82 (1981)

    Article  MathSciNet  MATH  Google Scholar 

  19. Joyal, A.: Foncteurs analytiques et espèces de structures. Lect. Notes Math. 1234, 126–159 (1986)

    Article  MathSciNet  MATH  Google Scholar 

  20. Kock, A.: Strong functors and monoidal monads. Arch. Math. 23, 113–120 (1972)

    Article  MathSciNet  MATH  Google Scholar 

  21. Kozen, D., Mamouras, K., Petrisan, D., Silva, A.: Nominal Kleene coalgebra. In: Automata, Languages, and Programming, ICALP 2015, vol. 9135 of Lect. Notes Comput. Sci., pp. 286–298. Springer (2015)

  22. Kurz, A., Petrisan, D., Severi, P., de Vries, F.-J.: Nominal coalgebraic data types with applications to lambda calculus. Log. Meth. Comput. Sci. 9(4) (2013)

  23. Kurz, A., Petrisan, D., Velebil, J.: Algebraic theories over nominal sets. CoRR, abs/1006.3027 (2010)

  24. Lambek, J.: A fixpoint theorem for complete categories. Math. Z. 103, 151–161 (1968)

    Article  MathSciNet  MATH  Google Scholar 

  25. Makkai, M., Paré, R.: Accessible categories: the foundation of categorical model theory, vol. 104 of Contemporary Math. Am. Math Soc. (1989)

  26. Milius, S.: A sound and complete calculus for finite stream circuits. In: Logic in Computer Science, LICS 2010, pp. 449–458. IEEE Computer Society (2010)

  27. Milius, S., Wißmann, T.: Finitary corecursion for the infinitary lambda calculus. In: Moss, L., Sobocinski, P. (eds.) Algebra and Coalgebra in Computer Science, CALCO 2015, vol. 35 of LIPIcs, pp. 336–351 Schloss Dagstuhl - Leibniz-Zentrum fuer Informatik (2015)

  28. Petrişan, D.: Investigations into Algebra and Topology over Nominal Sets. PhD thesis, University of Leicester (2011)

    Google Scholar 

  29. Pitts, A.: Nominal logic, a first order theory of names and binding. Inf. Comput. 186, 165–193 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  30. Pitts, A.: Nominal sets: Names and symmetry in computer science. Cambridge university press (2013)

  31. Plotkin, G., Turi, D.: Towards a mathematical operational semantics. In: Logic in Computer Science, LICS 1997, pp. 280–291. IEEE (1997)

  32. Rutten, J.: Universal coalgebra: a theory of systems. Theoret. Comput. Sci. 249 (1), 3–80 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  33. Rutten, J.: Rational streams coalgebraically. Log. Meth Comput. Sci. 4(3), 9 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  34. Tzevelekos, N.: Full abstraction for nominal general references. In: Logic in Computer Science, LICS 2007, pp. 399–410. IEEE (2007)

  35. Worrell, J.: On the final sequence of a finitary set functor. Theoret. Comput. Sci. 338, 184–199 (2005)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lutz Schröder.

Additional information

In fond memory of our colleague and mentor Horst Herrlich

This work forms part of the DFG-funded project COAX (MI 717/5-1 and SCHR 1118/12-1)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Milius, S., Schröder, L. & Wißmann, T. Regular Behaviours with Names. Appl Categor Struct 24, 663–701 (2016). https://doi.org/10.1007/s10485-016-9457-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10485-016-9457-8

Keywords

Navigation