Skip to main content
Log in

Normalizers, Centralizers and Action Representability in Semi-Abelian Categories

  • Published:
Applied Categorical Structures Aims and scope Submit manuscript

Abstract

We introduce the notion of normalizer as motivated by the classical notion in the category of groups. We show for a semi-abelian category ℂ that the following conditions are equivalent:

  1. (a)

    ℂ is action representable and normalizers exist in ℂ;

  2. (b)

    the category Mono(ℂ) of monomorphisms in ℂ is action representable;

  3. (c)

    the category ℂ2 of morphisms in ℂ is action representable;

  4. (d)

    for each category \(\mathbb {D}\) with a finite number of morphisms the category \({\mathbb {C}} ^{\mathbb {D}}\) is action representable.

Moreover, when in addition ℂ is locally well-presentable, we show that these conditions are further equivalent to:

  1. (e)

    ℂ satisfies the amalgamation property for protosplit normal monomorphism and ℂ satisfies the axiom of normality of unions;

  2. (f)

    for each small category \(\mathbb {D}\), the category \({\mathbb {C}} ^{\mathbb {D}}\) is action representable.

We also show that if ℂ is homological, action accessible, and normalizers exist in ℂ, then ℂ is fiberwise algebraically cartesian closed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Borceux, F., Bourn, D.: Mal’cev, protomodular, homological and semi-abelian categories. Kluwer Academic Publishers (2004)

  2. Borceux, F., Janelidze, G., Kelly, G.M.: On the representability of actions in a semi-abelian category. Theory and Applications of Categories 14(11), 244–286 (2005)

    MATH  MathSciNet  Google Scholar 

  3. Bourn, D.: Mal’cev categories and fibration of pointed objects. Appl. Categ. Struct. 4(2–3), 307–327 (1996)

    Article  MATH  MathSciNet  Google Scholar 

  4. Bourn, D.: Centralizer and faithful groupoid. Journal of Algebra 328(1), 43–76 (2011)

    Article  MATH  MathSciNet  Google Scholar 

  5. Bourn, D., Gray, J.R.A.: Aspects of algebraic exponentiation. Bulletin of the Belgian Mathematical Society 19(5), 821–844 (2012)

    MATH  MathSciNet  Google Scholar 

  6. Bourn, D., Janelidze, G.: Centralizers in action accessible categories. Cahiers de Topologie et Géométrie Différentielles Catégoriques 50(3), 211–232 (2009)

    MATH  MathSciNet  Google Scholar 

  7. Carboni, A., Lambeck, J., Pedicchio, M.C.: Internal graphs and internal groupoids in Mal’cev categories. CMS Conference Proceedings 13, 97–109 (1992)

    Google Scholar 

  8. Gray, J.R.A.: Algebraic exponentiation and internal homology in general categories. Ph.D. thesis, University of Cape Town (2010)

  9. Gray, J.R.A.: Algebraic exponentiation in general categories. Appl. Categ. Struct. 20(6), 543–567 (2012)

    Article  MATH  Google Scholar 

  10. Huq, S.A.: Commutator, nilpotency and solvability in categories. Q. J. Math. 19(1), 363–389 (1968)

    Article  MATH  MathSciNet  Google Scholar 

  11. Huq, S.A.: Upper central series in a category. Journal für die reine und angewandte Mathematik 252, 209–214 (1971)

    MathSciNet  Google Scholar 

  12. Janelidze, G., Márki, L., Tholen, W.: Semi-abelian categories. Journal of Pure and Applied Algebra 168, 367–386 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  13. Janelidze, G., Márki, L., Tholen, W., Ursini, A.: Ideal determined categories. Cahiers de topologie et geométrie différentielle catégoriques 51, 115–127 (2010)

    MATH  Google Scholar 

  14. Martins-Ferreira, N.: Low-dimensional internal categorial structures in weakly mal’cev sesquicategories. Ph.D. thesis, University of Cape Town (2008)

  15. Orzech, G.: Obstruction theory in algebraic categories I, II. Journal of Pure and Applied Algebra 2(4), 287–314 and 315–340 (1972)

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. R. A. Gray.

Additional information

Dedicated to George Janelidze on the occasion of his 60th birthday.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gray, J.R.A. Normalizers, Centralizers and Action Representability in Semi-Abelian Categories. Appl Categor Struct 22, 981–1007 (2014). https://doi.org/10.1007/s10485-014-9379-2

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10485-014-9379-2

Keywords

Mathematics Subject Classification (2010)

Navigation