Skip to main content
Log in

Labilibaculum antarcticum sp. nov., a novel facultative anaerobic, psychrotorelant bacterium isolated from marine sediment of Antarctica

  • Original Paper
  • Published:
Antonie van Leeuwenhoek Aims and scope Submit manuscript

Abstract

A novel facultative anaerobic and facultative psychrophilic bacterium, designated SPP2T, was isolated from an Antarctic marine sediment. Cells of the isolate were observed to be long rods (0.5 × 5–10 μm), Gram-stain negative and to have gliding motility. For growth, the optimum NaCl concentration was found to be 2–3% and the optimum temperature to be 18–22 °C. Strain SPP2T cannot use sulfate and nitrate as electron acceptors in the presence of lactate. The G+C content of the genomic DNA was determined to be 36.0 mol%.. The major cellular fatty acids were identified as anteiso-C15:0 and iso-C15:0. MK-7 was found to be the predominant respiratory quinone. Phylogenetic analysis based on the 16S rRNA gene revealed that the novel strain belongs to the family Marinifilaceae and to be closely related to Labilibaculum manganireducens 59.10-2MT with 16S rRNA gene sequence identity of 98%. The OrthoANI and dDDH values between the genome sequences of strain SPP2T and its close relative were 84% and 27.3%, which are lower than the threshold values for species delineation. On the basis of phylogenetic and phenotypic characterisation, Labilibaculum antarcticum sp. nov. is proposed with the type strain SPP2T (= NBRC 111151T = CECT 9460T).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  • Atashgahi S (2019) Discovered by genomics: putative reductive dehalogenases with N-terminus transmembrane helixes. FEMS Microbiol Ecol 95:fiz048

    Article  CAS  Google Scholar 

  • Chun J, Oren A, Ventosa A et al (2018) Proposed minimal standards for the use of genome data for the taxonomy of prokaryotes. Int J Syst Evol Microbiol 68:461–466. https://doi.org/10.1099/ijsem.0.002516

    Article  CAS  Google Scholar 

  • Cord-Ruwisch R (1985) A quick method for the determination of dissolved and precipitated sulfides in cultures of sulfate-reducing bacteria. J Microbiol Methods 4:33–36. https://doi.org/10.1016/0167-7012(85)90005-3

    Article  CAS  Google Scholar 

  • Fujii M, Takano Y, Kojima H et al (2010) Microbial community structure, pigment composition, and nitrogen source of red snow in Antarctica. Microb Ecol 59:466–475. https://doi.org/10.1007/s00248-009-9594-9

    Article  CAS  PubMed  Google Scholar 

  • Han Z, Yang J, Shang-guan F (2019) Molecular and biochemical characterization of a bimodular xylanase from Marinifilaceae bacterium strain SPP2. Front Microbiol 10:1507

    Article  Google Scholar 

  • Iino T, Mori K, Itoh T et al (2014) Description of Mariniphaga anaerophila gen. nov., sp. nov., a facultatively aerobic marine bacterium isolated from tidal flat sediment, reclassification of the Draconibacteriaceae as a later heterotypic synonym of the Prolixibacteraceae and description of the family Marinifilaceae fam. nov. Int J Syst Evol Microbiol 64:3660–3667. https://doi.org/10.1099/ijs.0.066274-0

    Article  CAS  PubMed  Google Scholar 

  • Kojima H, Watanabe M, Tokizawa R et al (2016) Hymenobacter nivis sp. nov., isolated from red snow in Antarctica. Int J Syst Evol Microbiol. https://doi.org/10.1099/ijsem.0.001435

    Article  PubMed  Google Scholar 

  • Kumar S, Stecher G, Tamura K et al (2016) MEGA7: Molecular evolutionary genetics analysis version 7.0 for bigger datasets. Mol Biol Evol 33:1870–1874. https://doi.org/10.1093/molbev/msw054

    Article  CAS  Google Scholar 

  • Larkin MA, Blackshields G, Brown NP et al (2007) Clustal W and Clustal X version 2.0. Bioinformatics 23:2947–2948. https://doi.org/10.1093/bioinformatics/btm404

    Article  CAS  Google Scholar 

  • Lee I, Kim YO, Park S-C, Chun J (2016) OrthoANI: an improved algorithm and software for calculating average nucleotide identity. Int J Syst Evol Microbiol 66:1100–1103

    Article  CAS  Google Scholar 

  • Lombard V, Golaconda Ramulu H, Drula E et al (2014) The carbohydrate-active enzymes database (CAZy) in 2013. Nucleic Acids Res 42:D490–D495. https://doi.org/10.1093/nar/gkt1178

    Article  CAS  PubMed  Google Scholar 

  • Lovley D (2013) Dissimilatory Fe(III)-and Mn(IV)-reducing prokaryotes. In: Rosenberg E, DeLong EF, Lory S, Stackebrandt E, Thompson F (eds) The prokaryotes. Prokaryotic physiology and biochemistry, 4th edn. Springer, pp 287–308

  • Meier-Kolthoff JP, Auch AF, Klenk H-P, Göker M (2013) Genome sequence-based species delimitation with confidence intervals and improved distance functions. BMC Bioinform 14:60

    Article  Google Scholar 

  • Muyzer G (1995) Denaturing gradient gel electrophoresis of PCR-amplified 16S rDNA, a new molecular approach to analyse genetic diversity of mixed microbial communities. Mol Microb Ecol Man 3.4.4, pp 1–22

  • Na H, Kim S, Moon EY, Chun J (2009) Marinifilum fragile gen. nov., sp. nov., isolated from tidal flat sediment. Int J Syst Evol Microbiol 59:2241–2246. https://doi.org/10.1099/ijs.0.009027-0

    Article  CAS  PubMed  Google Scholar 

  • Oren A, Garrity GM (2013) List of new names and new combinations previously effectively, but not validly, published. Int J Syst Evol Microbiol 63:3131–3134. https://doi.org/10.1099/ijs.0.056101-0

    Article  Google Scholar 

  • Oren A, Garrity GM (2019) List of new names and new combinations previously effectively, but not validly, published. Int J Syst Evol Microbiol 69:5–9. https://doi.org/10.1099/ijsem.0.003174

    Article  PubMed  Google Scholar 

  • Stackebrandt E (2006) Taxonomic parameters revisited: tarnished gold standards. Microbiol Today 6:152–155

    Google Scholar 

  • Takano Y, Tyler JJ, Kojima H et al (2012) Holocene lake development and glacial-isostatic uplift at Lake Skallen and Lake Oyako, Lützow-Holm Bay, East Antarctica: based on biogeochemical facies and molecular signatures. Appl Geochem 27:2546–2559. https://doi.org/10.1016/J.APGEOCHEM.2012.08.009

    Article  CAS  Google Scholar 

  • Takano Y, Kojima H, Takeda E et al (2015) Biogeochemistry and limnology in Antarctic subglacial weathering: molecular evidence of the linkage between subglacial silica input and primary producers in a perennially ice-covered lake. Prog Earth Planet Sci 2:8. https://doi.org/10.1186/s40645-015-0036-7

    Article  Google Scholar 

  • Vandieken V, Marshall IPG, Niemann H et al (2017a) Labilibaculum manganireducens gen. nov., sp. nov. and Labilibaculum filiforme sp. nov., novel Bacteroidetes isolated from subsurface sediments of the Baltic Sea. Front Microbiol 8:2614

    Article  Google Scholar 

  • Vandieken V, Niemann H, Engelen B, Cypionka H (2017b) Marinisporobacter balticus gen. nov., sp. nov., Desulfosporosinus nitroreducens sp. nov. and Desulfosporosinus fructosivorans sp. nov., new spore-forming bacteria isolated from subsurface sediments of the Baltic Sea. Int J Syst Evol Microbiol 67:1887–1893

    Article  CAS  Google Scholar 

  • Watanabe T, Kojima H, Takano Y, Fukui M (2013) Diversity of sulfur-cycle prokaryotes in freshwater lake sediments investigated using aprA as the functional marker gene. Syst Appl Microbiol 36:436–443. https://doi.org/10.1016/J.SYAPM.2013.04.009

    Article  CAS  PubMed  Google Scholar 

  • Watanabe M, Kojima H, Fukui M (2018) Complete genome sequence of Marinifilaceae bacterium strain SPP2, isolated from the Antarctic marine sediment. Mar Genom. https://doi.org/10.1016/j.margen.2017.06.006

    Article  Google Scholar 

  • Widdel F, Bak F (1992) Gram-negative mesophilic sulfate-reducing bacteria. The Prokaryotes. Springer, New York, pp 3352–3378

    Chapter  Google Scholar 

  • Wu W-J, Zhao J-X, Chen G-J, Du Z-J (2016) Description of Ancylomarina subtilis gen. nov., sp. nov., isolated from coastal sediment, proposal of Marinilabiliales ord. nov. and transfer of Marinilabiliaceae, Prolixibacteraceae and Marinifilaceae to the order Marinilabiliales. Int J Syst Evol Microbiol 66:4243–4249. https://doi.org/10.1099/ijsem.0.001342

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors thank R. Tokizawa and A. Shinohara, Hokkaido University, for their technical assistance.

Funding

This study was supported by JSPS KAKENHI Grant Number 22370005 to Fukui and Research Fellow of Japan Society for the Promotion Science to Watanabe.

Author information

Authors and Affiliations

Authors

Contributions

MF collected the sediment sample and supervised the study. MW and HK conducted experiments. MW performed computational analyses. MW and HK wrote the manuscript. All authors discussed the data and approved the final manuscript.

Corresponding author

Correspondence to Miho Watanabe.

Ethics declarations

Conflict of interest

The authors declare that there are no conflicts of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 1537 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Watanabe, M., Kojima, H. & Fukui, M. Labilibaculum antarcticum sp. nov., a novel facultative anaerobic, psychrotorelant bacterium isolated from marine sediment of Antarctica. Antonie van Leeuwenhoek 113, 349–355 (2020). https://doi.org/10.1007/s10482-019-01345-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10482-019-01345-w

Keywords

Navigation