Skip to main content
Log in

The interactions of vanadate monomer with the mycelium of fungus Phycomyces blakesleeanus: reduction or uptake?

  • Original Paper
  • Published:
Antonie van Leeuwenhoek Aims and scope Submit manuscript

Abstract

The possibility of reduction of vanadate monomer in the mycelium of fungus Phycomyces blakesleeanus was investigated in this study by means of polarography. Control experiments were performed with vanadyl [V(IV)] and vanadate [V(V)] in 10 mM Hepes, pH 7.2. Addition of P. blakesleeanus mycelium resulted in disappearance of all V(IV) polarographic waves recorded in the control. This points to the uptake of all available V(IV) by the mycelium, up to 185 µmol/gFW, and suggests P. blakesleeanus as a potential agent in V(IV) bioremediation. Polarographic measurements of mycelium with low concentrations (0.1–1 mM) of V(V), that only allows the presence of monomer, showed that fungal mycelia removes around 27% of V(V) from the extracellular solution. Uptake was saturated at 104 ± 2 µmol/gFW which indicates excellent bioaccumulation capability of P. blakesleeanus. EPR, 51V NMR and polarographic experiments showed no indications of any measurable extracellular complexation of V(V) monomer with fungal exudates, reduction by the mycelium or adsorption to the cell wall. Therefore, in contrast to vanadium oligomers, vanadate monomer interactions with the mycelium are restricted to its transport into the fungal cell, probably by a phosphate transporter.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Agraz R, Van der Wal A, Van Leeuwen HP (1994) Voltammetric study of the interaction of cadmium with bacterial cell. Bioelectrochem Bioenerg 34:53–59. doi:10.1016/0302-4598(94)80009-X

    Article  CAS  Google Scholar 

  • Anke M, Illing–Guenther H, Schaefer U (2005) Recent progress on essentiality of the ultra trace element vanadium in the nutrition of animal and man. Biomed Res Trace Elem 16:208–214. doi:10.11299/brte.16.208

    CAS  Google Scholar 

  • Aureliano M (2016) Decavanadate toxicology and pharmacological activities: V10 ili V1, both or none? Oxid Med Cell Longev. doi:10.1155/2016/6103457

    PubMed  PubMed Central  Google Scholar 

  • Baldrian P (2003) Interactions of heavy metals with white-rot fungi. Enzyme Microb Technol 32:78–91. doi:10.1016/S0141-0229(02)00245-4

    Article  CAS  Google Scholar 

  • Bowman BJ (1983) Vanadate uptake in Neurospora crassa occurs via phosphate system II. J Bacteriol 153:286–291

    CAS  PubMed  PubMed Central  Google Scholar 

  • Campillo N, Lopez-Garcia I, Vinas P, Arnau-Jerez I, Hernandez-Cordoba M (2002) Determination of vanadium, molybdenum and chromium in soils, sediments and sludges by electrothermal atomic absorption spectrometry with slurry sample introduction. J Anal At Spectrom 17:1429–1433. doi:10.1039/B205699B

    Article  CAS  Google Scholar 

  • Coşkun E, Biçer E, Bulut İ (2015) Electrochemical and spectral studies of the interaction of niflumic acid with metavanadate (VO3+) ions. Int J Electrochem Sci 10:9216–9231

    Google Scholar 

  • Crans DC, Woll KA, Prusinskas K, Johnson MD, Norkus E (2013) Metal speciation in health and medicine represented by iron and vanadium. Inorg Chem 52:12262–12275. doi:10.1021/ic4007873

    Article  CAS  PubMed  Google Scholar 

  • Filipović I, Hahl Z, Gašparac Z, Klemenčić V (1953) Polarographic characteristics of +5 vanadium in phosphate, borate and carbonate buffers. J Am Chem Soc 76:2074–2080. doi:10.1021/ja01637a013

    Article  Google Scholar 

  • Gadd GM, Sayer GM (2000) Fungal transformations of metals and metalloids. In: Lovley DR (ed) Environmental microbe–metal interactions. American Society for Microbiology, Washington, pp 237–256

    Chapter  Google Scholar 

  • Gordon J (1991) Use of vanadate as protein-phosphotyrosine phosphatase inhibitor. Methods Enzymol 201:477–482. doi:10.1016/0076-6879(91)01043-2

    Article  CAS  PubMed  Google Scholar 

  • Han C, Cui B, Qu J (2009) Comparison of vanadium-rich activity of three species fungi of basidiomycetes. Biol Trace Elem Res 127:278–283. doi:10.1007/s12011-008-8246-0

    Article  CAS  PubMed  Google Scholar 

  • Khan AR, Crans DC, Pauliukaite R, Norkus E (2006) Spectrometric and electrochemical investigation of Vanadium(V) and Vanadium(IV) tartrate complexes in solution. J Braz Chem Soc 17:895–904. doi:10.1590/S0103-50532006000500012

    Article  CAS  Google Scholar 

  • Lingane JJ (1945) Polarographic characteristics of vanadium in its various oxidation states. J Am Chem Soc 67:182–188. doi:10.1021/ja01218a009

    Article  CAS  Google Scholar 

  • Puri S, Dubey RK, Gupta MK, Puri BK (1998) Differential pulse polarographic determination of trace amounts of vanadium and molybdenum in various standard alloys and environmental samples after preconcentration of their morpholine–4-carbodithioates on microcrystalline naphthalene or morpholine–4-dithiocarbamate cetyltrimethyl-ammonium bromide-naphthalene adsorbent. Talanta 46:655–664. doi:10.1016/S0039-9140(97)00322-6

    Article  CAS  PubMed  Google Scholar 

  • Rehder D (2008) Bioinorganic vanadium chemistry. Wiley, Chichester

    Book  Google Scholar 

  • Rehder D (2015) The role of vanadium in biology. Metallomics 7:730–742. doi:10.1039/C4MT00304G

    Article  CAS  PubMed  Google Scholar 

  • Rojas-Romo C, Arancibia V, Moreno–da Costa D, Tapia RA (2016) Highly sensitive determination of vanadium (V) by catalyticadsorptive stripping voltammetry. substituent effect on sensitivity III. Sensor Actuat B 224:772–779. doi:10.1016/j.snb.2015.10.094

    Article  CAS  Google Scholar 

  • Savvaidis I, Hughes MN, Poole RK (1992) Differential pulse polarography: a method of directly measurement of metal ions by live bacteria without separation of biomass and medium. FEMS Microbial Lett 92:181–186. doi:10.1016/0378-1097(92)90509-M

    Article  CAS  Google Scholar 

  • Savvaidis I, Hughes MN, Poole RK (2003) Differential pulse polarography: a method for the direct study of biosorption of metal ions by live bacteria from mixed metal solutions. Antonie Van Leeuwenhoek 84:99–107. doi:10.1023/A:1025489915704

    Article  CAS  PubMed  Google Scholar 

  • Slayman CL, Kaminski P, Stetson D (1990) Structure and function of fungal plasma-membrane ATPases. In: Kuhn PK, Trinci APJ, Jung MJ, Goosey MW, Copping LG (eds) Biochemistry of cell walls and membranes in fungi. Springer, Berlin, pp 299–316

    Chapter  Google Scholar 

  • Sutter RP (1975) Mutations affecting sexual development in Phycomyces blakesleeanus. Proc Natl Acad Sci USA 72:127–130

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tsiani E, Fantus IG (1997) Vanadium compounds: biological actions and potential as pharmacological agents. Trends Endocrinol Metabol 8:51–58. doi:10.1016/S1043-2760(96)00262-7

    Article  CAS  Google Scholar 

  • Versaw WK, Metzenberg RL (1995) Repressible cation-phosphate symporters in Neurospora crassa. Proc Natl Acad Sci USA 92:3884–3887. doi:10.1073/pnas.92.9.3884

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Žižić M, Živić M, Spasojević I, Bogdanović Pristov J, Stanić M, Cvetić-Antić T, Zakrzewska J (2013) The interactions of vanadium with Phycomyces blakesleeanus mycelium: enzymatic reduction, transport and metabolic effects. Res Microbiol 164:61–69. doi:10.1016/j.resmic.2012.08.007

    Article  PubMed  Google Scholar 

  • Žižić M, Živić M, Maksimović V, Stanić M, Križak S, Cvetić-Antić T, Zakrzewska J (2014) Vanadate influence on metabolism of sugar phosphates in fungus Phycomyces blakesleeanus. PLoS ONE 9:e102849. doi:10.1371/journal.pone.0102849

    Article  PubMed  PubMed Central  Google Scholar 

  • Žižić M, Dučić T, Grolimund D, Bajuk–Bogdanović D, Nikolic M, Stanić M, Križak S, Zakrzewska S (2015) X–ray absorption near–edge structure micro–spectroscopy study on vanadium speciation in Phycomyces blakesleeanus mycelium. Anal Bioanal Chem 407:7487–7496. doi:10.1007/s00216-015-8916-7

    Article  PubMed  Google Scholar 

  • Žižić M, Miladinović Z, Stanić M, Hadžibrahimović M, Živić M, Zakrzewska J (2016) 51V NMR investigation of cell-associated vanadate species in Phycomyces blakesleeanus mycelium. Res Microbiol 167:521–528. doi:10.1016/j.resmic.2016.04.012

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

This paper was supported by the Ministry of Education, Science and Technological Development of Republic of Serbia (Grant Number 173040).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Miroslav Živić.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hadžibrahimović, M., Sužnjević, D., Pastor, F. et al. The interactions of vanadate monomer with the mycelium of fungus Phycomyces blakesleeanus: reduction or uptake?. Antonie van Leeuwenhoek 110, 365–373 (2017). https://doi.org/10.1007/s10482-016-0808-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10482-016-0808-0

Keywords

Navigation