Skip to main content
Log in

Aeromonas and Plesiomonas species from scarlet ibis (Eudocimus ruber) and their environment: monitoring antimicrobial susceptibility and virulence

  • Original Paper
  • Published:
Antonie van Leeuwenhoek Aims and scope Submit manuscript

Abstract

The present study aimed at evaluating the role of captive scarlet ibises (Eudocimus ruber) and their environment as reservoirs of Aeromonas spp. and Plesiomonas spp., and analyzing the in vitro antimicrobial susceptibility and virulence of the recovered bacterial isolates. Thus, non-lactose and weak-lactose fermenting, oxidase positive Gram-negative bacilli were recovered from cloacal samples (n = 30) of scarlet ibises kept in a conservational facility and from water samples (n = 30) from their environment. Then, the antimicrobial susceptibility, hemolytic activity and biofilm production of the recovered Aeromonas spp. and Plesiomonas shigelloides strains were assessed. In addition, the virulence-associated genes of Aeromonas spp. were detected. Ten Aeromonas veronii bv. sobria, 2 Aeromonas hydrophila complex and 10 P. shigelloides were recovered. Intermediate susceptibility to piperacillin-tazobactam and cefepime was observed in 2 Aeromonas spp. and 1 P. shigelloides, respectively, and resistance to gentamicin was observed in 4 P. shigelloides. The automated susceptibility analysis revealed resistance to piperacillin-tazobactam and meropenem among Aeromonas spp. and intermediate susceptibility to gentamicin among P. shigelloides. All Aeromonas isolates presented hemolytic activity, while 3 P. shigelloides were non-hemolytic. All Aeromonas spp. and 3/10 P. shigelloides were biofilm-producers, at 28 °C, while 10 Aeromonas spp. and 6/10 P. shigelloides produced biofilms, at 37 °C. The most prevalent virulence genes of Aeromonas spp. were asa1 and ascV. Scarlet ibises and their environment harbour potentially pathogenic bacteria, thus requiring monitoring and measures to prevent contamination of humans and other animals.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  • Aravena-Román M, Inglis TJJ, Henderson B, Rilley TV, Chang BJ (2012) Antimicrobial susceptibilities of aeromonas strains isolated from clinical and environmental sources to 26 antimicrobial agents. Antimicrob Agents Chemother 569:1110–1112. doi:10.1128/AAC.05387-11

    Article  Google Scholar 

  • Bandeira TJPG, Moreira CA, Brilhante RSN, Castelo-Branco DSCM, Neto MP, Codeiro RA, Rodrigues TJ, Rocha MFG, Sidrim JJC (2013) In vitro activities of amoxicillin-clavulanate, doxucycline, ceftazidime, imipenem, and thimethoprim–sulfamethoxazole against biofilm of Brazilian strains of Burkholderia pseudomallei. Antimicrob Agents Chemother 57:5771–5773. doi:10.1128/AAC.00721-13

    Article  CAS  PubMed Central  Google Scholar 

  • Castelo-Branco DSCM, Guedes GMM, Brilhante RSN, Rocha MFG, Sidrim JJC, Moreira JLB, Cordeiro RA, Sales JA, Riello GB, Alencar LP, Paiva MA, Vasconcelos DC, Menezes ISIS, Ponte YB, Sampaio CM, Monteiro AJ, Bandeira TJ (2015) Virulence and antimicrobial susceptibility of clinical and environmental strains of Aeromonas spp. from Northeastern Brazil. Can J Microbiol 61:597–601. doi:10.1139/cjm-2015-0107

    Article  CAS  Google Scholar 

  • CLSI (2010) Clinical and Laboratory Standards Institute, M45-A2 Methods for antimicrobial dilution and disk susceptibility testing of infrequently isolated or fastidious bacteria; approved guideline-second edition. Clinical and Laboratory Standards Institute, Wayne

    Google Scholar 

  • CLSI (2012) Clinical Laboratory Standards Institute. Methods for dilution antimicrobial susceptibility tests for bacteria that grow aerobically; Approved Standard–Nineth Edition; document M07-A9. Clinical and Laboratory Standards Institute, Wayne

    Google Scholar 

  • Dobiasova H, Kutilova I, Piackova V, Vesely T, Cizek A, Dolejska M (2014) Ornamental fish as a source of plasmid-mediated quinolone resistance genes and antibiotic resistance plasmids. Vet Microbiol 171:413–421. doi:10.1016/j.vetmic.2014.02.011

    Article  CAS  PubMed  Google Scholar 

  • Fariñas LB, Noblet DS, Arce MA, García H, Ramírez M, Cabrera LE, Fernández TA, Castañeda TN (2005) Estudio de factores de virulencia en cepas de P. shigelloides aisladas de animales domésticos y afectivos (Study of virulence factors in P. shigelloides isolated from domestic and affective animals). Rev Electrón Vet 10:1–12

    Google Scholar 

  • Filiú WFOF, Wanke B, Agüena SM, Vilela VO, Macedo RCL, Lazera M (2002) Cativeiro de aves como fonte de Crytococcus neoformans na cidade de Campo Grande, Mato Grosso de Sul, Brasil. Rev Soc Bras Med Trop 35:591–595. doi:10.1590/S0037-86822002000600008

    Article  PubMed  Google Scholar 

  • Heydorn A, Nielsen AT, Hentzer M, Sternberg C, Givskov M, Ersboll BK et al (2000) Quantification of biofilm structures by the novel computer program COMSTAT. Microbiology 146:2395–2407. doi:10.1099/00221287-146-10-2395

    Article  CAS  PubMed  Google Scholar 

  • Igbinosa IH (2014) Antibiogram profiling and pathogenic status of Aeromonas species recovered from chicken. Saudi J Biol Sci 21:481–485. doi:10.1016/j.sjbs.2014.06.003

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Janda JM, Abbott SL (2010) The genus Aeromonas: taxonomy, pathogenicity and infection. Clin Microbiol Rev 23:35–73. doi:10.1128/CMR.00039-09

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Janda JM, Abbott SL, McIver CJ (2016) Plesiomonas shigelloides revisited. Clin Microbiol Rev 29:349–374. doi:10.1128/CMR.00103-15

    Article  PubMed  Google Scholar 

  • Kim K, Lee S, Kwak D (2015) Prevalence, biochemical characteristics, and antibiotic susceptibility of Aeromonas, Vibrio, and Plesiomonas isolated from different sources at a zoo. J Zoo Wildl Med 46:298–305. doi:10.1638/2014-0194R.1

    Article  PubMed  Google Scholar 

  • Kingombe CIB, D’Aoust JY, Huys G, Hofmann L, Rao M, Kwan J (1999) PCR detection, characterization, and distribution of virulence genes in Aeromonas spp. Appl Environ Microbiol 65:5293–5302

    CAS  PubMed  PubMed Central  Google Scholar 

  • Lamy B, Laurent F, Verdier I, Decousser JW, Lecaillon E, Marchandin H, Roger F, Tigaud S, De Montclos H, COLBVH Study Group, Kodjo A (2010) Accuracy of 6 commercial systems for identifying clinical Aeromonas isolates. Diagn Microbiol Infect Dis 67:9–14. doi:10.1016/j.diagmicrobio.2009.12.012

    Article  PubMed  Google Scholar 

  • Martino ME, Fasolato L, Montemurro F, Rosteghin M, Manfrin A, Patarnello T, Novelli E, Cardazzo B (2011) Determination of microbial diversity of Aeromonas strains on the basis of multilocus sequence typing, phenotype, and presence of putative virulence genes. Appl Environ Microbiol 77:4986–5000. doi:10.1128/AEM.00708-11

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Medeiros AO, Kohler LM, Hamdan JS, Missagia BS, Barbosa FA, Rosa CA (2008) Diversity and antifungal susceptibility of yeasts from tropical freshwater environments in Southeastern Brazil. Water Res 42:3921–3929. doi:10.1016/j.watres.2008.05.026

    Article  CAS  PubMed  Google Scholar 

  • Mizan FR, Jahid IK, Ha S (2015) Microbial biofilms in seafood: a food-hygiene challenge. Food Microbiol 49:41–55. doi:10.1016/j.fm.2015.01.009

    Article  CAS  PubMed  Google Scholar 

  • Parker JL, Shaw JG (2011) Aeromonas spp. clinical microbiology and disease. J Infect 62:09–11. doi:10.1016/j.jinf.2010.12.003

    Article  Google Scholar 

  • Ritchie BW, Harrison GJ, Harrison LR (1994) Avian medicine: principles and application. Wingers Publishing, Florida

    Google Scholar 

  • Schaber J, Hammond A, Carty N, Williams S, Colmer-Hamood J, Burrowes B, Dhevan V, Griswold J, Hamood AJ (2007) Diversity of biofilms produced by quorum-sensing-deficient clinical isolates of Pseudomonas aeruginosa. J Med Microbiol 56:738–748. doi:10.1099/jmm.0.47031-0

    Article  CAS  PubMed  Google Scholar 

  • Scoaris DO, Colacite J, Nakamura CV, Ueda-Nakamura T, Abreu Filho BA, Dias Filho BP (2008) Virulence and antibiotic susceptibility of aeromonas spp. isolated from drinking water. Antonie Van Leeuwenhoek 93:111–122

    Article  CAS  Google Scholar 

  • Silva GM, Silva CMF, Bruno SF, Abreu DLC (2004) Enterobacteriaceae identification of the intestinal microbiota in laying hens (Gallus gallus Linnaeus, 1758) from Lohmann S.L.S. lineage. Rev Bras Ciênc Vet 11:153–155. doi:10.4322/rbcv.2014.361

    Google Scholar 

  • Stepanovic S, Vukovic D, Dakic I, Savic B, Svabic-Vlahovic M (2000) A modified microtiter-plate test for quantification of staphylococcal biofilm formation. J Microbiol Methods 49:175–179

    Article  Google Scholar 

  • Tang HJ, Lai CC, Lin HL, Chao CM (2014) Clinical manifestations of bacteremia caused by Aeromonas species in Southern Taiwan. PLoS One 9:e91642. doi:10.1371/journal.pone.0091642

    Article  PubMed  PubMed Central  Google Scholar 

  • Wang G, Clark CG, Liu C, Pucknell C, Munro CK, Kruk TMAC, Caldeira R, Woodward DL, Rodgers FG (2003) Detection and characterization of the hemolysin genes in Aeromonas hydrophila and Aeromonas sobria by multiplex PCR. J Clin Microbiol 41:1048–1054. doi:10.1128/JCM.41.3.1048-1054.2003

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wellington EMH, Boxall ABA, Cross P, Feil EJ, Gaze WH, Hawkey PM, Johnson-Rollings AS, Jones DL, Lee NM, Otten W, Thomas CM, Williams AP (2013) The role of the natural environment in the emergence of antibiotic resistance in gram-negative bacteria. The Lancet Infect Dis 13:155–165. doi:10.1016/S1473-3099(12)70317-1

    Article  CAS  PubMed  Google Scholar 

  • Winn WC, Allen SD, Janda WM, Koneman EW, Procop GW, Schreckenberger PC, Woods GJ (2006) Color atlas and textbook of diagnostic microbiology. Lippincott Williams & Wilkins, Philadelphia, p 1736

    Google Scholar 

  • Yano Y, Hamano K, Tsutsui I, Aue-umneoy D, Ban M, Satomi M (2015) Occurrence, molecular characterization, and antimicrobial susceptibility of aeromonas spp. in marine species of shrimps cultured at inland low salinity ponds. Food Microbiol 47:21–27. doi:10.1016/j.fm.2014.11.003

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Council for Scientific and Technological Development (CNPq; Brazil; process: 445670/2014-2) and Coordination Office for the Improvement of Higher Education Personnel (CAPES; Brazil, Procad/Casadinho; process: 552215/2011-2). We thank Parque Mangal das Garças for allowing the performance of this research in their facility.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Raimunda Sâmia Nogueira Brilhante.

Ethics declarations

See Methods.

Conflicts of interest

None.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Castelo-Branco, D.S.C.M., Silva, A.L., Monteiro, F.O.B. et al. Aeromonas and Plesiomonas species from scarlet ibis (Eudocimus ruber) and their environment: monitoring antimicrobial susceptibility and virulence. Antonie van Leeuwenhoek 110, 33–43 (2017). https://doi.org/10.1007/s10482-016-0771-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10482-016-0771-9

Keywords

Navigation