Skip to main content

Advertisement

Log in

Improving the computational efficiency of stochastic programs using automated algorithm configuration: an application to decentralized energy systems

  • S.I.: Stochastic Modeling and Optimization, in memory of András Prékopa
  • Published:
Annals of Operations Research Aims and scope Submit manuscript

Abstract

The optimization of decentralized energy systems is an important practical problem that can be modeled using stochastic programs and solved via their large-scale, deterministic-equivalent formulations. Unfortunately, using this approach, even when leveraging a high degree of parallelism on large high-performance computing systems, finding close-to-optimal solutions still requires substantial computational effort. In this work, we present a procedure to reduce this computational effort substantially, using a state-of-the-art automated algorithm configuration method. We apply this procedure to a well-known example of a residential quarter with photovoltaic systems and storage units, modeled as a two-stage stochastic mixed-integer linear program. We demonstrate that the computing time and costs can be substantially reduced by up to 50% by use of our procedure. Our methodology can be applied to other, similarly-modeled energy systems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

(Hutter et al. 2010)

Fig. 2

(Schwarz et al. 2018a)

Fig. 3

(Schwarz et al. 2018a)

Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Notes

  1. Note that the higher temperature difference results in a larger energy content at the same volume compared to storage units for space heating.

  2. Markov processes have proven suitable to generate PV generation and energy demand of the decentralized energy system that depend essentially on fluctuating and uncertain meteorological parameters (see Schwarz et al. 2018a, b for details).

  3. The scenarios are further decomposed, because one scenario cannot be solved within 48 h for a MILP gap of 0.6% on a single computer. The intra-scenario connecting storage levels are not optimized by the DFO, but set to reasonable levels resulting in a negligible difference to the optimum of less than 1%.

  4. The MILP gap is set to 0.6%, because we observed no improvement of the sub-problem solution quality in practice after several days of additional computing time; this is almost always achieved within 1800 s.

  5. There are four storage capacities that do not require optimization. Therefore, only 54,000 sub-problems are solved, instead of 64 800 (= 4 storage capacities per iteration times 27 parts per scenario × 100 scenarios times 6 iterations).

  6. The ends of the whiskers represent the lowest wall-clock time within the 1.5 interquartile range (IQR) of the lower quartile, and the highest wall-clock time within the 1.5 IQR of the upper quartile. Outliers are not shown.

  7. Note that the nodes of the MILP problem are different from the computing nodes of the HPC cluster.

  8. In practice, due to time restrictions per job of the HPC queuing system, the computation takes about a week using CPLEX in its default configuration, and less than half a week when using the optimized configurations.

References

  • Altmann, M., Brenninkmeijer, A., Lanoix, J.-C., Ellison, D., Crisan, A., & Hugyecz, A., et al. (2010). Decentralized energy systems. Technical report European Parliament’s Committee (ITRE). http://www.europarl.europa.eu/document/activities/cont/201106/20110629ATT22897/20110629ATT22897EN.pdf. Accessed 29 Sept 2016.

  • Andriosopoulos, K., Zopounidis, C., & Doumpos, M. (2016). Editorial to the special issue “OR in energy modeling and management”. Computers & Operations Research, 66, 225–227. https://doi.org/10.1016/j.cor.2015.11.005.

    Article  Google Scholar 

  • Ansótegui, C., Sellmann, M., & Tierney, K. (2009). A gender-based genetic algorithm for the automatic configuration of algorithms. In D. Hutchison, T. Kanade, J. Kittler, J. M. Kleinberg, F. Mattern, J. C. Mitchell, et al. (Eds.), Principles and practice of constraint programming—CP 2009 (Vol. 5732, pp. 142–157)., Lecture Notes in Computer Science Berlin: Springer.

    Chapter  Google Scholar 

  • Atamtürk, A., & Savelsbergh, M. W. P. (2005). Integer-programming software systems. Annals of Operations Research, 140, 67–124. https://doi.org/10.1007/s10479-005-3968-2.

    Article  Google Scholar 

  • Avdoulas, C., Bekiros, S., & Boubaker, S. (2018). Evolutionary-based return forecasting with nonlinear STAR models: Evidence from the Eurozone peripheral stock markets. Annals of Operations Research, 262, 307–333. https://doi.org/10.1007/s10479-015-2078-z.

    Article  Google Scholar 

  • Ben-Ayed, O., Blair, C. E., Boyce, D. E., & LeBlanc, L. J. (1992). Construction of a real-world bilevel linear programming model of the highway network design problem. Annals of Operations Research, 34, 219–254. https://doi.org/10.1007/bf02098181.

    Article  Google Scholar 

  • Beraldi, P., Conforti, D., & Violi, A. (2008). A two-stage stochastic programming model for electric energy producers. Computers & Operations Research, 35, 3360–3370. https://doi.org/10.1016/j.cor.2007.03.008.

    Article  Google Scholar 

  • Bergstra, J. S., Bardenet, R., Bengio, Y., & Kégl, B. (2011). Algorithms for hyper-parameter optimization. In J. Shawe-Taylor, R. S. Zemel, P. L. Bartlett, F. Pereira, & K. Q. Weinberger (Eds.), Advances in neural information processing systems (Vol. 24, pp. 2546–2554). Red Hook: Curran Associates Inc.

    Google Scholar 

  • Dantzig, G. B. (1955). Linear programming under uncertainty. Management Science, 1, 197–206.

    Article  Google Scholar 

  • Fawcett, C., & Hoos, H. H. (2016). Analysing differences between algorithm configurations through ablation. Journal of Heuristics, 22, 431–458. https://doi.org/10.1007/s10732-014-9275-9.

    Article  Google Scholar 

  • Fragnière, E., Gondzio, J., & Vial, J.-P. (2000). Building and solving large-scale stochastic programs on an affordable distributed computing system. Annals of Operations Research, 99, 167–187. https://doi.org/10.1023/a:1019245101545.

    Article  Google Scholar 

  • Hutter, F., Babic, D., Hoos, H. H., & Hu, A. J. (2007). Boosting verification by automatic tuning of decision procedures. In Austin, TX, USA (pp. 27–34). https://doi.org/10.1109/famcad.2007.9.

  • Hutter, F., Hoos, H. H., & Leyton-Brown, K. (2010). Automated configuration of mixed integer programming solvers. In D. Hutchison, T. Kanade, J. Kittler, J. M. Kleinberg, F. Mattern, J. C. Mitchell, et al. (Eds.), Integration of AI and OR techniques in constraint programming for combinatorial optimization problems (Vol. 6140, pp. 186–202)., Lecture Notes in Computer Science Berlin: Springer.

    Chapter  Google Scholar 

  • Hutter, F., Hoos, H. H., & Leyton-Brown, K. (2011). Sequential model-based optimization for general algorithm configuration. In D. Hutchison, T. Kanade, J. Kittler, J. M. Kleinberg, F. Mattern, J. C. Mitchell, et al. (Eds.), Learning and intelligent optimization (Vol. 6683, pp. 507–523)., Lecture Notes in Computer Science Berlin: Springer.

    Chapter  Google Scholar 

  • Hutter, F., Hoos, H. H., Leyton-Brown, K., & Stützle, T. (2009). ParamILS: An automatic algorithm configuration framework. Journal of Artificial Intelligence Research, 36, 267–306. https://doi.org/10.1613/jair.2808.

    Article  Google Scholar 

  • IBM. (2016). ILOG CPLEX optimization studio: CPLEX user’s manual, version 12 release 6. http://www.ibm.com/support/knowledgecenter/en/SSSA5P_12.6.1/ilog.odms.studio.help/pdf/usrcplex.pdf. Accessed 3 June 2016.

  • Jones, D. R., Schonlau, M., & Welch, W. J. (1998). Efficient global optimization of expensive black-box functions. Journal of Global Optimization, 13, 455–492. https://doi.org/10.1023/a:1008306431147.

    Article  Google Scholar 

  • Khalilpourazari, S., & Arshadi Khamseh, A. (2017). Bi-objective emergency blood supply chain network design in earthquake considering earthquake magnitude: A comprehensive study with real world application. Annals of Operations Research, 52, 168. https://doi.org/10.1007/s10479-017-2588-y.

    Article  Google Scholar 

  • Kobayakawa, T., & Kandpal, T. C. (2016). Optimal resource integration in a decentralized renewable energy system: Assessment of the existing system and simulation for its expansion. Energy for Sustainable Development, 34, 20–29. https://doi.org/10.1016/j.esd.2016.06.006.

    Article  Google Scholar 

  • Kuznia, L., Zeng, B., Centeno, G., & Miao, Z. (2013). Stochastic optimization for power system configuration with renewable energy in remote areas. Annals of Operations Research, 210, 411–432. https://doi.org/10.1007/s10479-012-1110-9.

    Article  Google Scholar 

  • Mascia, F., López-Ibáñez, M., Dubois-Lacoste, J., & Stützle, T. (2014). Grammar-based generation of stochastic local search heuristics through automatic algorithm configuration tools. Computers & Operations Research, 51, 190–199. https://doi.org/10.1016/j.cor.2014.05.020.

    Article  Google Scholar 

  • Owens, B. (2014). The rise of distributed power. General electric (ecomagination). https://www.ge.com/sites/default/files/2014%2002%20Rise%20of%20Distributed%20Power.pdf. Accessed 30 Sept 2016.

  • Pintér, J. D. (2017). How difficult is nonlinear optimization? A practical solver tuning approach, with illustrative results. Annals of Operations Research, 31, 635. https://doi.org/10.1007/s10479-017-2518-z.

    Article  Google Scholar 

  • Prékopa, A. (1995). Stochastic programming. Dordrecht: Springer.

    Book  Google Scholar 

  • Prékopa, A., Ganzer, S., Deák, I., & Patyi, K. (1980). The STABIL stochastic programming model and its experimental application to the electrical energy Sector of the Hungarian economy. In M. A. H. Dempster (Ed.), stochastic programming. London: Academic Press.

    Google Scholar 

  • Schwarz, H., Bertsch, V., & Fichtner, W. (2018a). Two-stage stochastic, large-scale optimization of a decentralized energy system: A case study focusing on solar PV, heat pumps and storage in a residential quarter. OR Spectrum, 40, 265–310. https://doi.org/10.1007/s00291-017-0500-4.

    Article  Google Scholar 

  • Schwarz, H., Schermeyer, H., Bertsch, V., & Fichtner, W. (2018b). Self-consumption through power-to-heat and storage for enhanced PV integration in decentralised energy systems. Solar Energy, 163, 150–161. https://doi.org/10.1016/j.solener.2018.01.076.

    Article  Google Scholar 

  • Shapiro, A., Dentcheva, D., & Ruszczynski, A. P. (2009). Lectures on stochastic programming: modeling and theory (MPS-SIAM series on optimization) (Vol. 9). Philadelphia, PA: SIAM.

    Book  Google Scholar 

  • Snoek, J., Larochelle, H., & Adams, R. P. (2012). Practical Bayesian optimization of machine learning algorithms. In F. Pereira, C. J. C. Burges, L. Bottou, & K. Q. Weinberger (Eds.), Advances in neural information processing systems (Vol. 25, pp. 2951–2959). Red Hook: Curran Associates Inc.

    Google Scholar 

  • Taborda, D., & Zdravkovic, L. (2012). Application of a hill-climbing technique to the formulation of a new cyclic nonlinear elastic constitutive model. Computers and Geotechnics, 43, 80–91. https://doi.org/10.1016/j.compgeo.2012.02.001.

    Article  Google Scholar 

  • Talbi, E.-G. (2016). Combining metaheuristics with mathematical programming, constraint programming and machine learning. Annals of Operations Research, 240, 171–215. https://doi.org/10.1007/s10479-015-2034-y.

    Article  Google Scholar 

  • Velik, R., & Nicolay, P. (2016). Energy management in storage-augmented, grid-connected prosumer buildings and neighborhoods using a modified simulated annealing optimization. Computers & Operations Research, 66, 248–257. https://doi.org/10.1016/j.cor.2015.03.002.

    Article  Google Scholar 

  • Wallace, S. W., & Fleten, S.-E. (2003). Stochastic programming models in energy. In Stochastic programming (Vol. 10, pp. 637–677, Handbooks in Operations research and management science). Amsterdam: Elsevier.

  • Wolfe, P. (2008). The implications of an increasingly decentralised energy system. Energy Policy, 36, 4509–4513. https://doi.org/10.1016/j.enpol.2008.09.021.

    Article  Google Scholar 

  • Yazdanie, M., Densing, M., & Wokaun, A. (2016). The role of decentralized generation and storage technologies in future energy systems planning for a rural agglomeration in Switzerland. Energy Policy, 96, 432–445. https://doi.org/10.1016/j.enpol.2016.06.010.

    Article  Google Scholar 

  • Zokaee, S., Jabbarzadeh, A., Fahimnia, B., & Sadjadi, S. J. (2017). Robust supply chain network design: An optimization model with real world application. Annals of Operations Research, 257, 15–44. https://doi.org/10.1007/s10479-014-1756-6.

    Article  Google Scholar 

Download references

Acknowledgements

The authors would like to gratefully acknowledge the funding provided by the Helmholtz Association of German Research Centers via the Research Programme “Storage and Cross-Linked Infrastructures”. In addition, the authors also acknowledge support by the state of Baden-Württemberg through bwHPC and the German Research Foundation (DFG) through Grant No. INST 35/1134-1 FUGG, as well as through an NSERC Discovery Grant. We also acknowledge the use of Compute Canada/Calcul Canada computing resources. Valentin Bertsch acknowledges funding from the ESRI’s Energy Policy Research Centre. All omissions and errors are our own.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hannes Schwarz.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendices

Appendix A

The entire two-stage stochastic MILP of the residential quarter is shown in the following (nomenclature is listed in Table 2):Objective function:

$$ \begin{aligned} costs &= \mathop {min}\limits_{{c_{g,i} ,e_{\omega ,t}^{grid} ,e_{\omega ,t}^{fi} }} ANF \cdot \mathop \sum \limits_{g = 1}^{4} \mathop \sum \limits_{i = 1}^{{k_{1} }} cost_{i} \cdot c_{g,i} \\ & \quad \quad \frac{ + 1}{N} \cdot \mathop \sum \limits_{\omega = 1}^{N} \mathop \sum \limits_{t = 1}^{T} \left( {p^{grid} \cdot e_{\omega ,t}^{grid} - p^{fi} \cdot e_{\omega ,t}^{fi} } \right), \\ \end{aligned} $$
(A.1)
Table 2 Nomenclature of the residential quarter modeled as a two-stage stochastic program
  • the installed PV capacity of the quarter: \( \mathop \sum \limits_{g = 1}^{4} c_{g,i = PV} = 240 \),

  • the number of heat pumps for SH within a building group: \( c_{{g,i = HP_{SH} }} = 1 \),

  • the number of heat pumps for DHW within a building group: \( c_{{g,i = HP_{DHW} }} = 1, \)

  • the number of heating elements for the SH storage: \( c_{{g,i = HE_{SH} }} = 4, \)

  • the number of heating elements for the DHW storage: \( c_{{g,i = HE_{DHW} }} = 4 \).

Additionally, electrical supply and demand have to be balanced:

$$ e_{\omega ,t}^{pv} + e_{\omega ,t}^{grid} = d_{\omega ,t}^{ee} + \mathop \sum \limits_{g = 1}^{4} \mathop \sum \limits_{u = 1}^{2} \left( {d_{\omega ,g,u,t}^{hp} + d_{\omega ,g,u,t}^{he} } \right) + e_{\omega ,t}^{fi} \quad \forall \omega \forall t, $$
(A.2)

with supplied PV energy \( e_{\omega ,t}^{pv} = \mathop \sum \limits_{g = 1}^{4} e_{\omega ,t}^{pv,kwp} \cdot c_{g,i = PV} \) and balanced thermal supply and demand:

$$ \begin{aligned} & COP_{\omega ,u,t} \cdot d_{\omega ,g,u,t}^{hp} + \eta \cdot d_{\omega ,g,u,t}^{he} + \left( {1 - l_{u} } \right) \cdot s_{\omega ,g,u,t} + q_{\omega ,g,u,t} \\ & \quad = d_{\omega ,g,u,t}^{th} + L_{\omega ,g,u,t} + s_{\omega ,g,u,t + 1} + pos_{\omega ,g,u,t} \cdot r_{u} \quad \forall \omega ,\forall g,\forall u,\forall t, \\ \end{aligned} $$
(A.3)

with the storage heat losses \( l_{u = SH} = 0.003 \) and \( l_{u = DHW} = 0.006 \) and ramp-up losses \( r_{u} = 0.05 \).

The storage possibility is restricted by:

$$ s_{g,u}^{min} \le s_{\omega ,g,u,t} \le c_{{g,i = S_{u} }}\quad \forall \omega ,\forall g,\forall u,\forall t, $$
(A.4)

where \( s_{g,u}^{min} = 0 \). Load changes are taken into account by:

$$ z_{\omega ,g,u,t + 1} - z_{\omega ,g,u,t} = pos_{\omega ,g,u,t} - neg_{\omega ,g,u,t} \quad \forall \omega ,\forall g,\forall u,\forall t. $$
(A.5)

The heating element supply for each building group is given by:

$$ \eta \cdot d_{\omega ,g,u,t}^{he} \le c_{{g,i = HE_{u} }} \cdot d^{he,max}\quad \forall \omega ,\forall g,\forall u,\forall t, $$
(A.6)

and the heat pump supply by:

$$ COP_{\omega ,u,t} \cdot d_{\omega ,g,u,t}^{hp} = \frac{1}{m} \cdot d_{\omega ,t}^{hp,max} \cdot z_{\omega ,g,u,t} \quad \forall \omega ,\forall g,\forall u,\forall t, $$
(A.7)
$$ z_{\omega ,g,u = DHW,t} \le m \cdot c_{{g,i = HP_{DHW} }} \quad \forall \omega \forall g\forall t, $$
(A.8)
$$ \mathop \sum \limits_{u = 1}^{2} z_{\omega ,g,u,t} \le m \cdot \mathop \sum \limits_{u = 1}^{2} c_{{g,i = HP_{u} }} \quad \forall \omega ,\forall g,\forall t. $$
(A.9)

If heat pumps run only at idle, half or full load, then \( m = 2 \) with \( z_{\omega ,g,u = SH,t} \in \left\{ {0,1,2,3,4} \right\} \) and \( z_{\omega ,g,u = DHW,t} \in \left\{ {0,1,2} \right\} \), otherwise \( z_{\omega ,g,u = SH,t} ,z_{\omega ,g,u = DHW,t} \in R_{ + } \). The following constraints equal the element of the first and last time step \( t \):

$$ s_{\omega ,g,u,t = T} = s_{\omega ,g,u,t = 1} \quad \forall \,\omega ,\forall g,\forall u, $$
(A.10)
$$ z_{\omega ,g,u,t = T} = z_{\omega ,g,u,t = 1} \quad \forall\, \omega ,\forall g,\forall u. $$
(A.11)

All presented variables need to be positive:

$$\begin{aligned} &c_{g,i} ,e_{\omega ,t}^{grid} ,e_{\omega ,t}^{fi} ,q_{\omega ,g,u,t} ,d_{\omega ,g,u,t}^{hp} ,d_{\omega ,g,u,t}^{he} ,s_{\omega ,g,u,t} ,L_{\omega ,g,u,t} ,pos_{\omega ,g,u,t} ,\neg_{\omega ,g,u,t} ,z_{\omega ,g,u,t}\\ &\ge 0\,\forall \omega ,\forall g,\forall i,\forall u,\forall t.\end{aligned} $$
(A.12)

Appendix B

Table 3 lists the three parameters that have the largest effect on performance and their mean wall-clock time reduction, itemized in detail for all 27 partitions.

Table 3 Results of the ablation analysis listing the three parameters that have the largest effect on performance altered from the default to the partition-specific optimized configuration of CPLEX. The parameters are determined by SMAC on nine instances for the given 27 partitions. The values in the brackets show the mean wall-clock time of the nine instances to achieve a MILP gap of at most 0.6%, whereby unsuccessful runs that could not be solved within the cutoff-time of 1800 s are counted as having taken 18,000 s

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Schwarz, H., Kotthoff, L., Hoos, H. et al. Improving the computational efficiency of stochastic programs using automated algorithm configuration: an application to decentralized energy systems. Ann Oper Res (2019). https://doi.org/10.1007/s10479-018-3122-6

Download citation

  • Published:

  • DOI: https://doi.org/10.1007/s10479-018-3122-6

Keywords

Navigation