Skip to main content
Log in

Generic finiteness of equilibrium distributions for bimatrix outcome game forms

  • S.I.: Game theory and optimization
  • Published:
Annals of Operations Research Aims and scope Submit manuscript

Abstract

We provide sufficient and necessary conditions for the generic finiteness of the number of distributions on outcomes, induced by the completely mixed Nash equilibria associated to a bimatrix outcome game form. These equivalent conditions are stated in terms of the ranks of two matrices constructed from the original game form.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Notes

  1. When there is no danger of confusion, we will not write explicitly the dependence on the utility u for matrices.

References

  • González-Pimienta, C. (2010). Generic finiteness of outcome distributions for two person game forms with three outcomes. Mathematical Social Sciences, 59, 364–365.

    Article  Google Scholar 

  • Govindan, S., & McLennan, A. (1998). Generic finiteness of outcome distributions for two person game forms with zero sum and common interest utilities. Mimeo: University of Western Ontario.

    Google Scholar 

  • Govindan, S., & McLennan, A. (2001). On the generic finiteness of equilibrium outcome distributions in game forms. Econometrica, 69, 455–471.

    Article  Google Scholar 

  • Harsanyi, J. C. (1973). Oddness of the number of equilibrium points: A new proof. International Journal of Game Theory, 2, 235–250.

    Article  Google Scholar 

  • Kreps, D. M., & Wilson, R. (1982). Sequential equilibria. Econometrica, 50, 863–894.

    Article  Google Scholar 

  • Kukushkin, N. S., Litan, C., & Marhuenda, F. (2008). On the generic finiteness of equilibrium outcome distributions in bimatrix game forms. Journal of Economic Theory, 139, 392–395.

    Article  Google Scholar 

  • Litan, C., Marhuenda, F., & Sudhölter, P. (2015). Determinacy of equilibrium in outcome game forms. Journal of Mathematical Economics, 60, 28–32.

    Article  Google Scholar 

  • Litan, C. M., & Marhuenda, F. (2012). Determinacy of equilibrium outcome distributions for zero sum and common utility games. Economics Letters, 115, 152–154.

    Article  Google Scholar 

  • Mas-Colell, A. (2010). Generic finiteness of equilibrium payoffs for bimatrix games. Journal of Mathematical Economics, 46, 382–383.

    Article  Google Scholar 

  • Park, I.-U. (1997). Generic finiteness of equilibrium outcome distributions for sender–receiver cheap-talk games. Journal of Economic Theory, 76, 431–448.

    Article  Google Scholar 

  • Rosenmüller, J. (1971). On a generalization of the Lemke–Howson algorithm to noncooperative n-person games. SIAM Journal on Applied Mathematics, 20, 73–79.

    Article  Google Scholar 

  • Wilson, R. (1971). Computing equilibria of n-person games. SIAM Journal on Applied Mathematics, 20, 80–87.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Francisco Marhuenda.

Additional information

The first author acknowledges that this work was supported by a grant of the Romanian National Authority for Scientific Research and Innovation, CNCS-UEFISCDI, project number PN-II-RU-TE-2014-4-1827. The second author acknowledges financial support from the Ministerio Economía y Competitividad (Spain), grant ECO2016-75992-P, MDM 2014-0431, and Comunidad de Madrid, MadEco-CM (S2015/HUM-3444). The third author acknowledges support from the Spanish Ministerio de Economía y Competitividad under project ECO2015-66803-P and from the Danish Council for Independent Research|Social Sciences (Grant-id: DFFD 1327-00097).

A The proof of Theorem 2.8

A The proof of Theorem 2.8

Lemma A.1

Suppose that Assumption 2.3 holds. Let \(u^1, u^2 \in U\). The set of QE of the game \(\left( u^1( \phi ),u^2( \phi )\right) \) induce finitely many quasi-distributions on outcomes if and only if for every \(\omega \in \Omega \) and every QE \(\left( x\left( u^2\right) ,y\left( u^1\right) \right) \) of that game the following two conditions hold.

  1. (a)

    \(x \left( u^2\right) \phi ^{\omega } \) is in the image of \(u^1( \phi )^t\)

  2. (b)

    \( \phi ^{\omega } y\left( u^1\right) \) is in the image of \(u^2( \phi )\).

Proof

Let \(u^1, u^2 \in U\). By Proposition 2.6, the set of QE of the game \(\left( u^1( \phi ),u^2( \phi )\right) \) induce finitely many quasi-distributions on outcomes if and only if for every \(\omega \in \Omega \), every solution \(x\left( u^2\right) \) of the system of Eq. (2) and every solution \(y\left( u^1\right) \) of the system of Eq. (1) we have that \(x\left( u^2\right) \phi ^{\omega } K_1\left( u^1 \right) =\{0\}\) and \( K_2(u^2) \phi ^{\omega } y\left( u^1\right) =\{0\}\). This is equivalent to the statement that \(x\left( u^2\right) \phi ^{\omega }\) is orthogonal to \(K_1\left( u^1 \right) \) and \(\phi ^{\omega } y\left( u^1\right) \) is orthogonal to \( K_2(u^2) \), which occurs if and only if \(x \left( u^2\right) \phi ^{\omega } \) is in the image of \(u^1( \phi )^t\) and \( \phi ^{\omega }\, y\left( u^1\right) \) is in the image of \(u^2( \phi )\). \(\square \)

Lemma A.2

Let \(\omega \in \Omega \) and \(u^1, u^2 \in U\). Let Assumption 2.3 hold and suppose that \( K_2(u^2) \phi ^{\omega } K_1(u^1) =\{0\}\). Then,

$$\begin{aligned} \mathrm{rank}\left( \begin{array}{cc} u^1( \phi )&{} 0 \\ \phi ^{\omega } &{} u^2( \phi ) \\ \end{array}\right) =2k \end{aligned}$$

Proof

We use the notation

$$\begin{aligned} \phi ^{\omega } = \left( \begin{array}{cc} B^{\omega } &{} C^{\omega } \\ D^{\omega } &{} E^{\omega } \end{array}\right) \end{aligned}$$

to denote the decomposition of the matrix \(u( \phi )\) in (3) applied to the matrix \(\phi ^{\omega } \). Let

$$\begin{aligned} F= \left( \begin{array}{cc} u^1( \phi )&{} 0 \\ \phi ^{\omega } &{} u^2( \phi ) \\ \end{array}\right) \end{aligned}$$

We can write now

$$\begin{aligned} F=\left( \begin{array}{cccc} B \left( u^1 \right) &{} C \left( u^1 \right) &{} 0 &{} 0 \\ D\left( u^1 \right) &{} E\left( u^1 \right) &{} 0 &{} 0 \\ B^{\omega } &{} C^{\omega } &{} B \left( u^2 \right) &{} C \left( u^2 \right) \\ D^{\omega } &{} E^{\omega } &{} D \left( u^2 \right) &{} E \left( u^2 \right) \end{array}\right) \end{aligned}$$

By elementary row and column operations,

$$\begin{aligned} \mathrm{rank}F = \mathrm{rank}\left( \begin{array}{ccc} B \left( u^1 \right) &{} C \left( u^1 \right) &{} 0 \\ B^{\omega } &{} C^{\omega } &{} B \left( u^2 \right) \\ D^{\omega } &{} E^{\omega } &{} D \left( u^2 \right) \end{array}\right) = \mathrm{rank}\left( \begin{array}{ccc} B \left( u^1 \right) &{} C \left( u^1 \right) &{} 0 \\ B^{\omega } &{} C^{\omega } &{} B \left( u^2 \right) \\ D^{\omega }_1 &{} E^{\omega }_1 &{} 0 \end{array}\right) \end{aligned}$$

where

$$\begin{aligned} D^{\omega }_1= & {} D^{\omega } - D \left( u^2 \right) B^{-1}\left( u^2 \right) B^{\omega } \end{aligned}$$
(8)
$$\begin{aligned} E^{\omega }_1= & {} E^{\omega } - D \left( u^2 \right) B^{-1}\left( u^2 \right) C^{\omega } \end{aligned}$$
(9)

Finally,

$$\begin{aligned} \mathrm{rank}F = \mathrm{rank}\left( \begin{array}{ccc} B \left( u^1 \right) &{} 0 &{} 0 \\ B^{\omega } &{} C^{\omega }_2 &{} B \left( u^2 \right) \\ D^{\omega }_1 &{} E^{\omega }_2 &{} 0 \end{array}\right) \end{aligned}$$

with \(C^{\omega }_2 = C^{\omega } - B^{\omega } B^{-1}\left( u^1 \right) C \left( u^1 \right) \) and

$$\begin{aligned} E^{\omega }_2= & {} E^{\omega }_1 - D^{\omega }_1 B^{-1}\left( u^1 \right) C \left( u^1 \right) \\= & {} E^{\omega } - D \left( u^2 \right) B^{-1}\left( u^2 \right) C^{\omega } - D^{\omega } B^{-1}\left( u^1 \right) C \left( u^1 \right) + D \left( u^2 \right) B^{-1}\left( u^2 \right) B^{\omega } B^{-1}\left( u^1 \right) C \left( u^1 \right) \\= & {} \left( \begin{array}{cc} - D\left( u^2\right) B^{-1} \left( u^2 \right)&I_{m-k} \end{array}\right) \left( \begin{array}{cc} B^{\omega } &{} C^{\omega }\\ D^{\omega } &{} E^{\omega } \end{array}\right) \left( \begin{array}{c} -B^{-1} \left( u^1 \right) C \left( u^1\right) \\ I_{n-k} \end{array}\right) \\= & {} \left( \begin{array}{cc} - D\left( u^2\right) B^{-1} \left( u^2 \right)&I_{m-k} \end{array}\right) \phi ^{\omega } \left( \begin{array}{c} -B^{-1} \left( u^1 \right) C \left( u^1\right) \\ I_{n-k} \end{array}\right) \end{aligned}$$

It follows from Lemma 2.4 that

$$\begin{aligned} K_1(u^1) =\left\{ y^h(u^1,v) : v \in \mathbb {R}^{n-k} \right\} = \left\{ \left( \begin{array}{c} -B^{-1} \left( u^1 \right) C \left( u^1\right) \\ I_{n-k} \end{array}\right) v : v \in \mathbb {R}^{n-k} \right\} \end{aligned}$$

and

$$\begin{aligned} K_2(u^2) = \left\{ x^h(u^2,w) : w \in \mathbb {R}^{m-k} \right\} = \left\{ w \left( \begin{array}{cc} - D\left( u^2\right) B^{-1} \left( u^2 \right)&I_{m-k} \end{array}\right) : w \in \mathbb {R}^{m-k} \right\} \end{aligned}$$

Since \( K_2(u^2) \phi ^{\omega } K_1(u^1) =\{0\}\), for any \(v\in \mathbb {R}^{n-k}\) and \(w\in \mathbb {R}^{m-k}\) we have that

$$\begin{aligned} w\, E^{\omega }_2 \, v= w \left( \begin{array}{cc} - D\left( u^2\right) B^{-1} \left( u^2 \right)&I_{m-k} \end{array}\right) \phi ^{\omega } \left( \begin{array}{c} -B^{-1} \left( u^1 \right) C \left( u^1\right) \\ I_{n-k} \end{array}\right) v = 0 \end{aligned}$$

Therefore, \(E^{\omega }_2=0\) and

$$\begin{aligned} \mathrm{rank}F = \mathrm{rank}\left( \begin{array}{ccc} B \left( u^1 \right) &{} 0 &{} 0 \\ B^{\omega } &{} C^{\omega }_2 &{} B \left( u^2 \right) \\ D^{\omega }_1 &{} 0 &{} 0 \end{array}\right) = \mathrm{rank}\left( \begin{array}{ccc} B \left( u^1 \right) &{} 0 &{} 0 \\ B^{\omega } &{} C^{\omega }_2 &{} B \left( u^2 \right) \end{array}\right) = 2k \end{aligned}$$

because, since \(\mathrm{rank}B \left( u^1 \right) = \mathrm{rank}B \left( u^2 \right) = k\), the rows of \(D^{\omega }_1\) are a linear combination of the rows of \(B \left( u^1 \right) \). \(\square \)

Lemma A.3

Suppose that Assumption 2.3 holds. Let \(u^1, u^2 \in U\), \(\omega \in \Omega \). Then,

  1. (a)

    \(x\left( u^2 \right) \phi ^{\omega } K_1\left( u^1 \right) =\{0\}\) for every solution \( x\left( u^2 \right) \) of the system of Eq. (2) if and only if

    $$\begin{aligned} \mathrm{rank}\left( \begin{array}{cc} u^1( \phi )&{} 0 \\ \phi ^{\omega } &{} u^2( \phi ) \\ 0 &{} d_n \end{array}\right) =2k \end{aligned}$$
  2. (b)

    \(K_2(u^2) \phi ^{\omega } y \left( u^1 \right) =0\) for every solution \(y \left( u^1 \right) \) of the system of Eq. (1) if and only if

    $$\begin{aligned} \mathrm{rank}\left( \begin{array}{ccc} u^2( \phi ) &{} \phi ^{\omega } &{} 0\\ 0 &{} u^1( \phi )&{} d_m \end{array}\right) =2k \end{aligned}$$

Proof

We prove only part (a). The proof of part (b) is similar. Fix a solution \(x= x\left( u^2 \right) \) of the system of Eq. (2). Let

$$\begin{aligned} F= \left( \begin{array}{cc} u^1( \phi )&{} 0 \\ \phi ^{\omega } &{} u^2( \phi ) \\ 0 &{} d_n \end{array}\right) \end{aligned}$$

Since, \(d_n= \frac{ 1}{\alpha \left( u^2 \right) }x u^2( \phi )\), by elementary row operations we have that

$$\begin{aligned} \mathrm{rank}F = \mathrm{rank}\left( \begin{array}{cc} u^1( \phi )&{} 0 \\ \phi ^{\omega } &{} u^2( \phi ) \\ \frac{ 1}{\alpha \left( u^2 \right) } x \phi ^{\omega } &{} 0 \end{array}\right) \end{aligned}$$

Assume that \(x\, \phi ^{\omega } K_1\left( u^1 \right) =0\). Then, by Lemma A.1, \(x\, \phi ^{\omega } \) is in the image of \(u^1( \phi )^t\) and hence \(x\, \phi ^{\omega } \) is a linear combination of the rows of \(u^1( \phi )\). Therefore,

$$\begin{aligned} \mathrm{rank}F = \mathrm{rank}\left( \begin{array}{cc} u^1( \phi )&{} 0 \\ \phi ^{\omega } &{} u^2( \phi )\end{array}\right) \end{aligned}$$

and, by Lemmas 2.5 and A.2 we have that \(\mathrm{rank}F = 2k\).

Conversely, suppose now that \(\mathrm{rank}F = 2k\). We proceed now as in Lemma A.2 and write F as

The above argument shows that

Since \(\mathrm{rank}u^2( \phi ) = \mathrm{rank}B \left( u^2 \right) = k\), we get that

where \( D^{\omega }_1, E^{\omega }_1\) are defined in (8) and  (9). Since, \(\mathrm{rank}u^1( \phi ) = \mathrm{rank}B \left( u^2 \right) = k\), the rows of the matrix \(\left( \begin{array}{cc} D^{\omega }_1&E^{\omega }_1 \end{array}\right) \) and \(x\, \phi ^{\omega }\) are a linear combination of the rows of \(u^1( \phi )\). It follows that \(x\, \phi ^{\omega }\) is orthogonal to \(K_1\left( u^1\right) \) and (a) follows. \(\square \)

The following result follows now immediately from Proposition 2.6 and Lemma A.3.

Theorem A.4

Suppose that Assumption 2.3 holds. Let \(u^1, u^2 \in U\). Then, the set of all the QE of the game \(\left( u^1( \phi ),u^2( \phi )\right) \) induces finitely many quasi-distributions on outcomes iff for every \(\omega \in \Omega \)

$$\begin{aligned} \mathrm{rank}\left( \begin{array}{cc} u^1( \phi )&{} 0 \\ \phi ^{\omega } &{} u^2( \phi ) \\ 0 &{} d_n \end{array}\right) =2k \quad \text {and} \quad \mathrm{rank}\left( \begin{array}{ccc} u^2( \phi ) &{} \phi ^{\omega } &{} 0\\ 0 &{} u^1( \phi )&{} d_m \end{array}\right) =2k \end{aligned}$$

We address now the proof of Theorem 2.8. We show first the ‘if’ part. If the rank conditions in Theorem 2.8 hold, then by Theorem A.4 the set of QE induce a unique quasi-distribution on outcomes. Since the set of CMNE is a subset of the set of QE, the set of CMNE also induces, at most, a unique distribution on outcomes. Thus, the ‘if’ part of Theorem 2.8 holds.

Conversely, suppose that the set of CMNE of the game \(\left( u^1( \phi ),u^2( \phi )\right) \) induces finitely many distributions on outcomes and that the game \(\left( u^1( \phi ),u^2( \phi )\right) \) has, at least, a CMNE , say \(\bar{x} = x^p(u^2) + x^h(u^2,w_0)\in \Delta _+(S^1)\) and \(\bar{y} = y^p\left( u^1 \right) + y^h(u^1,v_0)\in \Delta _+(S^2)\) with \(w_0\in \mathbb {R}^{m-k}, v_0\in \mathbb {R}^{n-k}\). By continuity, there are open sets \(H_1 \subset \mathbb {R}^{n-k}\) and \(H_2 \subset \mathbb {R}^{m-k}\) such that for \(v\in H_1\), \(w\in H_2\) we have that \(x = x^p(u^2) + x^h(u^2,w)\in \Delta _+(S^1)\) and \(y= y^p \left( u^1 \right) + y^h(u^1,v)\in \Delta _+(S^2)\) is a CMNE of the game \(\left( u^1( \phi ),u^2( \phi )\right) \).

If the rank conditions in Theorem 2.8 do not hold, then, by Theorem A.4 for some outcome \(\omega \in \Omega \) the polynomial \(q_{\omega }(v,w)\) in (7) is not constant and, hence, it takes a continuum of values as the variables (vw) vary on the open set \(H_1\times H_2\). It follows that the set CMNE of the game \(\left( u^1( \phi ),u^2( \phi )\right) \) induce infinitely many distributions on outcomes, which contradicts our assumption. And the ‘only if’ part of Theorem 2.8 follows.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Litan, C., Marhuenda, F. & Sudhölter, P. Generic finiteness of equilibrium distributions for bimatrix outcome game forms. Ann Oper Res 287, 801–810 (2020). https://doi.org/10.1007/s10479-018-2854-7

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10479-018-2854-7

Keywords

Mathematics Subject Classification

JEL Classification

Navigation