Skip to main content
Log in

Solution for a class of closed-loop leader-follower games with convexity conditions on the payoffs

  • Original Paper
  • Published:
Annals of Operations Research Aims and scope Submit manuscript

Abstract

In the present paper, a recent deterministic continuum-strategy two-player discrete-time dynamic leader-follower game with fixed finite time duration and closed-loop information structure is studied. The types of the considered payoff functions can be widely used in different applications (mainly in conflicts of consuming a limited resource, where one player, called the leader, is a superior authority choosing a strategy choice first, and another player, called the follower, chooses after). In case of certain payoff convexity, explicit conditions are given, when it can be known in advance that an equilibrium exists and consists of only two possible choices of both players at each step. The sub-game equilibrium from a given step may depend on the former selections of the players. Thus the continuum-strategy problem has been reduced to a general finite game of two possible choices corresponding to both players. Such type of games could be solved in a standard way with dynamic programming using a computer. Nevertheless, the game can be further simplified, and then an equilibrium can be directly determined, such decreasing the computational demand to a great extent. A solution algorithm and practical examples are also given to support the real-life application of the results.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Adda, J., & Cooper, R. W. (2003). Dynamic economics: Quantitative methods and applications. MIT Press.

  • Alemdar, N. M., & Sirakaya, S. (2003). On-line computation of Stackelberg equilibria with synchronous parallel genetic algorithms. Journal of Economic Dynamics and Control, 27(8), 1503–1515.

    Article  Google Scholar 

  • Amir, R., & De Feo, G. (2014). Endogenous timing in a mixed duopoly. International Journal of Game Theory, 43, 629–658.

    Google Scholar 

  • Averboukh, Y., & Baklanov, A. (2014). Stackelberg solutions of differential games in the class of nonanticipative strategies. Dynamic Games and Applications, 4, 1–9.

    Article  Google Scholar 

  • Bar Niv (Burnovski), M., & Zang, I. (1999). “Costless” regulation of monopolies with large entry cost: A game theoretic approach. International Journal of Game Theory, 28, 35–52.

    Article  Google Scholar 

  • Başar, T., & Selbuz, H. (1979). Closed-loop Stackelberg strategies with applications in the optimal control of multilevel systems. IEEE Transactions on Automatic Control, 24, 166–179.

    Article  Google Scholar 

  • Başar, T., & Olsder, G. J. (1995). Dynamic noncooperative game theory (2nd ed.). New York: Academic Press.

    Google Scholar 

  • Bertsekas, D. P., (2007). Dynamic programming and optimal control, 4th edn. Athena Scientific.

  • Bhaskar, U., Fleischer, L., & Anshelevich, E. (2011). A Stackelberg strategy for routing flow over time. Games and Economic Behavior, 92, 232–247.

    Article  Google Scholar 

  • Bressan, A., & Wei, D. (2013). Stackelberg solutions of feedback type for differential games with random initial data. Dynamic Games and Applications, 3, 341–358.

    Article  Google Scholar 

  • Chen, C. I., & Cruz, J. B, Jr. (1972). Stackelberg solution for two-person games with biased information patterns. IEEE Transactions on Automatic Control, 17(6), 791–798.

    Article  Google Scholar 

  • Colson, B., Marcotte, P., & Savard, G. (2007). An overview of bilevel optimization. Annals of Operations Research, 153, 235–256.

    Article  Google Scholar 

  • Dastidar, K. G. (2004). On Stackelberg games in a homogeneous product market. European Economic Review, 48, 549–562.

    Article  Google Scholar 

  • Du, G., Jiao, R. J., & Chen, M. (2014). Joint optimization of product family configuration and scaling design by Stackelberg game. European Journal of Operational Research, 232(2), 330–341.

    Article  Google Scholar 

  • Edmunds, T. A., & Bard, J. F. (1992). An algorithm for the mixed-integer nonlinear bilevel programming problem. Annals of Operations Research, 34, 149–162.

    Article  Google Scholar 

  • Hendrix, E. M. T. (2015). On competition in a Stackelberg location-design model with deterministic supplier choice. Annals of Operations Research,. doi:10.1007/s10479-015-1793-9.

    Google Scholar 

  • Kanti Bag, P., & Roy, S. (2011). On sequential and simultaneous contributions under incomplete information. International Journal of Game Theory, 40, 119–175.

    Article  Google Scholar 

  • Kicsiny, R., Piscopo, V., Scarelli, A., & Varga, Z. (2014a). Dynamic Stackelberg game model for water rationalization in drought emergency. Journal of Hydrology, 517, 557–565.

    Article  Google Scholar 

  • Kicsiny, R., Varga, Z., & Scarelli, A. (2014b). Backward induction algorithm for a class of closed-loop Stackelberg games. European Journal of Operational Research, 237, 1021–1036.

    Article  Google Scholar 

  • Kitti, M. (2000). Computation of incentive Stackelberg solution. Master of Science Thesis. Helsinki University of Technology.

  • Korzhyk, D., Yin, Z., Kiekintveld, C., Conitzer, V., & Tambe, M. (2011). Stackelberg vs. Nash in security games: An extended investigation of interchangeability, equivalence, and uniqueness. Journal of Artificial Intelligence Research, 41, 297–327.

    Google Scholar 

  • Kovács, D. L., & Dobrowiecki, T. P. (2013). Converting MA-PDDL to extensive-form games. Acta Polytechica Hungarica, 10(8), 27–47.

    Google Scholar 

  • Kristály, A., & Nagy, Sz. (2013). Followers’ strategy in Stackelberg equilibrium problems on curved strategy sets. Acta Polytechica Hungarica, 10(7), 69–80.

    Google Scholar 

  • Kuhn, H. W., & Tucker, A. (1953). Contributions to the Theory of Games. Princeton: Princeton University Press.

    Google Scholar 

  • Luh, P. B., Chang, S., & Chang, T. (1984). Solutions and properties of multi-stage Stackelberg games. Automatica, 20(2), 251–256.

    Article  Google Scholar 

  • Madani, K. (2010). Game theory and water resources. Journal of Hydrology, 381, 225–238.

    Article  Google Scholar 

  • Motto, A. L. (2005). On the exact solution of a class of Stackelberg games. In Proceedings of the 2005 American Control Conference, Portland, Oregon, USA, 1, (pp. 249–250).

  • Nie, P. (2005). Dynamic Stackelberg games under open-loop complete information. Journal of The Franklin Institute, 342, 737–748.

    Article  Google Scholar 

  • Nie, P., Chen, L., & Fukushima, M. (2006). Dynamic programming approach to discrete time dynamic feedback Stackelberg games with independent and dependent followers. European Journal of Operational Research, 169(1), 310–328.

    Article  Google Scholar 

  • Pardalos, P. M., Siskos, Y., & Zopounidis, C. (1995). Advances in multicriteria analysis. Dordrecht: Springer.

    Book  Google Scholar 

  • Romano, R., & Yildirim, H. (2005). On the endogeneity of Cournot-Nash and Stackelberg equilibria: Games of accumulation. Journal of Economic Theory, 120(1), 73–107.

    Article  Google Scholar 

  • Rosen, J. B. (1965). Existence and uniqueness of equilibrium points for concave n-person games. Econometrica, 33(3), 520–534.

    Article  Google Scholar 

  • Roughgarden, T. (2004). Stackelberg scheduling strategies. SIAM Journal of Computing, 33(2), 332–350.

    Article  Google Scholar 

  • Sadigh, A. N., Hashemi, S., & Hamzeh, A. (2011). Spam detection by Stackelberg game. Advanced Computing: An International Journal, 2(2), 32–40.

    Google Scholar 

  • Sharma, Y., & Williamson, D. P. (2009). Stackelberg thresholds in network routing games or the value of altruism. Games and Economic Behavior, 67, 174–190.

    Article  Google Scholar 

  • Staňková, K., Olsder, G. J. (2006). Inverse Stackelberg games versus adverse-selection principal-agent model theory. http://nextgenerationinfrastructures.eu/catalog/file/462440/ISDG_06_Stankova2.pdf Accessed September 12, 2016.

  • Staňková, K., De Schutter, B. (2011). Stackelberg equilibria for discrete-time dynamic games–Part I: Deterministic games. In Proceedings of the 2011 IEEE International Conference on Networking, Sensing and Control, Delft, The Netherlands, (pp. 249–254).

  • Szidarovszky, F., Molnár, S., & Okuguchi, K. (1991). An n-person Stackelberg leader-leader model. Applied Mathematics and Computation, 46(3), 221–232.

    Article  Google Scholar 

  • Teraoka, Y., Osumi, S., & Hohjo, H. (2003). Some Stackelberg type location game. Computers and Mathematics with Applications, 46, 1147–1154.

    Article  Google Scholar 

  • Vallée, T. (1998). Comparison of different Stackelberg solutions in a deterministic dynamic pollution control. http://www.dklevine.com/archive/poldyn.pdf Accessed September 12, 2016.

  • von Stackelberg, H. (2011). Market structure and equilibrium. (Trans: Urch, L., Hill, R. and Bazin, D). Springer: Berlin.

  • Xia, L., & Conitzer, V. (2010). Stackelberg voting games: Computational aspects and paradoxes. In Proceedings of the 24th AAAI Conference on Artificial Intelligence, Atlanta, Georgia, USA, (pp. 921–926).

Download references

Acknowledgments

The author thanks the Editor for the encouraging help in the submission process and the anonymous reviewing comments which helped to improve this paper significantly. The author also thanks his colleagues in the Department of Mathematics in the Faculty of Mechanical Engineering (Szent István University) for their support. This paper was supported by the János Bolyai Research Scholarship of the Hungarian Academy of Sciences.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Richárd Kicsiny.

Appendix

Appendix

Lemma 1

Suppose that

$$\begin{aligned} {\pi }''\left( \rho \right) \le \frac{2}{R}\left| {{\pi }'\left( \rho \right) } \right| , \quad (\rho \in ]0,R[) \end{aligned}$$
(7)

where \(\pi \) is the price function introduced in the game of Sect. 3.

Then \(\frac{\partial ^{2}f_t \left( {x_1 ,...,x_t ,y_1 ,...,y_t } \right) }{\partial \left( {\left( {1-y_{t-s} } \right) \left( {1-x_{t-s} } \right) } \right) ^{2}}\ge 0\) and \(\frac{\partial ^{2}g_t \left( {x_1 ,...,x_t ,y_1 ,...,y_t } \right) }{\partial \left( {\left( {1-y_{t-s} } \right) \left( {1-x_{t-s} } \right) } \right) ^{2}}\ge 0\) for any \(x_1 ,y_1 ,...,x_t ,y_t \in \left[ {0,1} \right] \) (\(t=2,...,T\),\(s=1,...,t-1)\).

Proof

Let \(t=2,...,T\), \(s=1,...,t-1\), then for the game of Sect. 3 (for any \(x_1 ,y_1 ,...,x_t ,y_t \in \left[ {0,1} \right] )\), it holds that:

$$\begin{aligned}&\frac{\partial f_t \left( {x_1 ,...,x_t ,y_1 ,...,y_t } \right) }{\partial \left( {\left( {1-y_{t-s} } \right) \left( {1-x_{t-s} } \right) } \right) }\nonumber \\&\quad =x_t \left[ {-{\pi }'\left[ {R-\sum _{i=1}^{t-1} {\left( {1-\prod _{k=1}^{t-i} {\left( {1-y_{t-k} } \right) \left( {1-x_{t-k} } \right) } } \right) } r_i } \right] } \right. \nonumber \\&\qquad \quad \times \frac{\partial \sum _{i=1}^{t-1} {\prod _{k=1}^{t-i} {\left( {1-y_{t-k} } \right) \left( {1-x_{t-k} } \right) } r_i } }{\partial \left( {\left( {1-y_{t-s} } \right) \left( {1-x_{t-s} } \right) } \right) }\cdot \left( {\sum _{i=1}^{t-1} {\prod _{k=1}^{t-i} {\left( {1-y_{t-k} } \right) \left( {1-x_{t-k} } \right) } } r_i +r_t } \right) \nonumber \\&\qquad +\left( {\alpha -\pi \left[ {R-\sum _{i=1}^{t-1} {\left( {1-\prod _{k=1}^{t-i} {\left( {1-y_{t-k} } \right) \left( {1-x_{t-k} } \right) } } \right) } r_i } \right] } \right) \nonumber \\&\qquad \quad \cdot \left. {\frac{\partial \sum _{i=1}^{t-1} {\prod _{k=1}^{t-i} {\left( {1-y_{t-k} } \right) \left( {1-x_{t-k} } \right) } r_i } }{\partial \left( {\left( {1-y_{t-s} } \right) \left( {1-x_{t-s} } \right) } \right) }} \right] \nonumber \\&\qquad +\,qy_t \left( {1-x_t } \right) \left[ {-{\pi }'\left[ {R-\sum _{i=1}^{t-1} {\left( {1-\prod _{k=1}^{t-i} {\left( {1-y_{t-k} } \right) \left( {1-x_{t-k} } \right) } } \right) } r_i } \right] } \right. \nonumber \\&\qquad \quad \cdot \frac{\partial \sum _{i=1}^{t-1} {\prod _{k=1}^{t-i} {\left( {1-y_{t-k} } \right) \left( {1-x_{t-k} } \right) } r_i } }{\partial \left( {\left( {1-y_{t-s} } \right) \left( {1-x_{t-s} } \right) } \right) }\cdot \left( {\sum _{i=1}^{t-1} {\prod _{k=1}^{t-i} {\left( {1-y_{t-k} } \right) \left( {1-x_{t-k} } \right) } } r_i +r_t } \right) \nonumber \\&\qquad +\left( {\gamma _t -\pi \left[ {R-\sum _{i-1}^{t-1} {\left( {1-} \right. \prod _{k=1}^{t-i} {\left( {1-y_{t-k} } \right) } } } \right. } \right. \nonumber \\&\qquad \quad \left. {\left. {\left. {\left. {\cdot \left( {1-x_{t-k} } \right) } \right) r_i } \right] } \right) \frac{\partial \sum _{i=1}^{t-1} {\prod _{k=1}^{t-i} {\left( {1-y_{t-k} } \right) \left( {1-x_{t-k} } \right) } r_i } }{\partial \left( {\left( {1-y_{t-s} } \right) \left( {1-x_{t-s} } \right) } \right) }} \right] \end{aligned}$$
(8)

(It should be noted that \(\frac{\partial ^{2}\sum _{i=1}^{t-1} {\prod _{k=1}^{t-i} {\left( {1-y_{t-k} } \right) \left( {1-x_{t-k} } \right) } r_i } }{\partial \left( {\left( {1-y_{t-s} } \right) \left( {1-x_{t-s} } \right) } \right) ^{2}}=0.)\)

$$\begin{aligned}&\frac{\partial ^{2}f_t \left( {x_1 ,...,x_t ,y_1 ,...,y_t } \right) }{\partial \left( {\left( {1-y_{t-s} } \right) \left( {1-x_{t-s} } \right) } \right) ^{2}}=x_t \left[ {-{\pi }''\left[ {R-\sum _{i=1}^{t-1} {\left( {1-\prod _{k=1}^{t-i} {\left( {1-y_{t-k} } \right) \left( {1-x_{t-k} } \right) } } \right) } r_i } \right] } \right. \nonumber \\&\qquad \cdot \left( {\frac{\partial \sum _{i=1}^{t-1} {\prod _{k=1}^{t-i} {\left( {1-y_{t-k} } \right) \left( {1-x_{t-k} } \right) } r_i } }{\partial \left( {\left( {1-y_{t-s} } \right) \left( {1-x_{t-s} } \right) } \right) }} \right) ^{2}\left( {\sum _{i=1}^{t-1} {\prod _{k=1}^{t-i} {\left( {1-y_{t-k} } \right) \left( {1-x_{t-k} } \right) } } r_i +r_t } \right) \nonumber \\&\quad -2{\pi }'\left[ {R-\sum _{i=1}^{t-1} {\left( {1-\prod _{k=1}^{t-i} {\left( {1-y_{t-k} } \right) } } \right. } } \right. \nonumber \\&\qquad \left. {\left. {\left. {\cdot \left( {1-x_{t-k} } \right) } \right) r_i } \right] \left( {\frac{\partial \sum _{i=1}^{t-1} {\prod _{k=1}^{t-i} {\left( {1-y_{t-k} } \right) \left( {1-x_{t-k} } \right) } r_i } }{\partial \left( {\left( {1-y_{t-s} } \right) \left( {1-x_{t-s} } \right) } \right) }} \right) ^{2}} \right] \nonumber \\&\quad +qy_t \left( {1-x_t } \right) \left[ {-{\pi }''} \right. \left[ {R-\sum _{i=1}^{t-1} {\left( {1-\prod _{k=1}^{t-i} {\left( {1-y_{t-k} } \right) \left( {1-x_{t-k} } \right) } } \right) } \cdot } \right. \left. {r_i } \right] \nonumber \\&\qquad \left( {\frac{\partial \sum _{i=1}^{t-1} {\prod _{k=1}^{t-i} {\left( {1-y_{t-k} } \right) \left( {1-x_{t-k} } \right) } r_i } }{\partial \left( {\left( {1-y_{t-s} } \right) \left( {1-x_{t-s} } \right) } \right) }} \right) ^{2}\nonumber \\&\qquad \left( {\sum _{i=1}^{t-1} {\prod _{k=1}^{t-i} {\left( {1-y_{t-k} } \right) \left( {1-x_{t-k} } \right) } } r_i +r_t } \right) -2{\pi }'\left[ {R-\sum _{i=1}^{t-1} {\left( {1-\prod _{k=1}^{t-i} {\left( {1-y_{t-k} } \right) } } \right. } } \right. \nonumber \\&\qquad \left. {\left. {\left. {\cdot \left( {1-x_{t-k} } \right) } \right) r_i } \right] \left( {\frac{\partial \sum _{i=1}^{t-1} {\prod _{k=1}^{t-i} {\left( {1-y_{t-k} } \right) \left( {1-x_{t-k} } \right) } r_i } }{\partial \left( {\left( {1-y_{t-s} } \right) \left( {1-x_{t-s} } \right) } \right) }} \right) ^{2}} \right] , \end{aligned}$$
(9)

so \(\frac{\partial ^{2}f_t \left( {x_1 ,...,x_t ,y_1 ,...,y_t } \right) }{\partial \left( {\left( {1-y_{t-s} } \right) \left( {1-x_{t-s} } \right) } \right) ^{2}}\ge 0\) if

$$\begin{aligned}&-{\pi }''\left[ {R-\sum _{i=1}^{t-1} {\left( {1-\prod _{k=1}^{t-i} {\left( {1-y_{t-k} } \right) \left( {1-x_{t-k} } \right) } } \right) } r_i } \right] \left( {\sum _{i=1}^{t-1} {\prod _{k=1}^{t-i} {\left( {1-y_{t-k} } \right) \left( {1-x_{t-k} } \right) } } r_i +r_t } \right) \nonumber \\&\quad -2{\pi }'\left[ {R-\sum _{i=1}^{t-1} {\left( {1-} \right. } } \right. -\left. {\left. {\prod _{k=1}^{t-i} {\left( {1-y_{t-k} } \right) \left( {1-x_{t-k} } \right) } } \right) r_i } \right] \ge 0, \end{aligned}$$
(10)

that is if

$$\begin{aligned}&{\pi }''\left[ {R-\sum _{i=1}^{t-1} {\left( {1-\prod _{k=1}^{t-i} {\left( {1-y_{t-k} } \right) \left( {1-x_{t-k} } \right) } } \right) } r_i } \right] \nonumber \\&\quad \le \frac{-2{\pi }'\left[ {R-\sum _{i=1}^{t-1} {\left( {1-\prod _{k=1}^{t-i} {\left( {1-y_{t-k} } \right) \left( {1-x_{t-k} } \right) } } \right) } r_i } \right] }{r_t +\sum _{i=1}^{t-1} {\prod _{k=1}^{t-i} {\left( {1-y_{t-k} } \right) \left( {1-x_{t-k} } \right) } } r_i }, \end{aligned}$$
(11)

assuming \(r_t +\sum _{i=1}^{t-1} {\prod _{k=1}^{t-i} {\left( {1-y_{t-k} } \right) \left( {1-x_{t-k} } \right) } } r_i \ne 0\), otherwise, (A4) already holds, because of \({\pi }'\left( \rho \right) \le 0\) (\(\rho \in ] {0,R} ])\). The numerator is the absolute value of itself. The positive denominator can be estimated with R from above. It follows that the following condition is sufficient for the second derivative to be nonnegative: \({\pi }''\left( \rho \right) \le \frac{2}{R}\left| {{\pi }'\left( \rho \right) } \right| \) (\(\rho \in ] {0,R} ])\). \(\frac{\partial ^{2}g_t \left( {x_1 ,...,x_t ,y_1 ,...,y_t } \right) }{\partial \left( {\left( {1-y_{t-s} } \right) \left( {1-x_{t-s} } \right) } \right) ^{2}}\ge 0\) (for any \(x_1 ,y_1 ,...,x_t ,y_t \in \left[ {0,1} \right] )\) (\(t=2,...,T\), \(s=1,...,t-1)\) can be similarly justified. Thus Lemma 1 has been proved. \(\square \)

Remark 5.1

(Kicsiny et al. 2014b) Consider the following type of price functions in the game of Sect. 3:

$$\begin{aligned} \pi \left( \rho \right) =\frac{c}{(\rho +\rho _0 )^{n}} (\rho \in \left[ {0,R} \right] ), \end{aligned}$$

where c, \(\rho _0 \) and n are positive constants. The graph of this function can be seen in Fig. 8.

Fig. 8
figure 8

Convex price function type

Then (A1) is satisfied for any \(\rho \in \left[ {0,R} \right] \) if

$$\begin{aligned} \rho _0 \ge \frac{\left( {n+1} \right) R}{2}. \end{aligned}$$
(12)

Lemma 2

Let \(\frac{\partial ^{2}f_t \left( {x_1 ,...,x_t ,y_1 ,...,y_t } \right) }{\partial \left( {\left( {1-y_{t-s} } \right) \left( {1-x_{t-s} } \right) } \right) ^{2}}\ge 0\) for any \(x_1 ,y_1 ,...,x_t ,y_t \in \left[ {0,1} \right] \) (\(t=2,...,T\), \(s=1,...,t-1)\) for function (3) in the game of Sect. 3.

Then \(\frac{\partial ^{2}f_t \left( {x_1 ,...,x_t ,y_1 ,...,y_t } \right) }{\partial x_{t-s}^2 }\ge 0\) for any \(x_1 ,y_1 ,...,x_t ,y_t \in \left[ {0,1} \right] \) (\(t=2,...,T\), \(s=1,...,t-1)\).

Proof

$$\begin{aligned} \begin{array}{l} \frac{\partial f_t \left( {x_1 ,...,x_t ,y_1 ,...,y_t } \right) }{\partial x_{t-s} }=\frac{\partial f_t \left( {x_1 ,...,x_t ,y_1 ,...,y_t } \right) }{\partial \left( {\left( {1-y_{t-s} } \right) \left( {1-x_{t-s} } \right) } \right) }\frac{\partial \left( {\left( {1-y_{t-s} } \right) \left( {1-x_{t-s} } \right) } \right) }{\partial x_{t-s} }=\frac{\partial f_t \left( {x_1 ,...,x_t ,y_1 ,...,y_t } \right) }{\partial \left( {\left( {1-y_{t-s} } \right) \left( {1-x_{t-s} } \right) } \right) }\cdot \\ \left( {-\left( {1-y_{t-s} } \right) } \right) , \\ \end{array} \end{aligned}$$
(13)

from which

$$\begin{aligned} \begin{array}{l} \frac{\partial ^{2}f_t \left( {x_1 ,...,x_t ,y_1 ,...,y_t } \right) }{\partial x_{t-s}^2 }=\left( {-\left( {1-y_{t-s} } \right) } \right) \frac{\partial ^{2}f_t \left( {x_1 ,...,x_t ,y_1 ,...,y_t } \right) }{\partial \left( {\left( {1-y_{t-s} } \right) \left( {1-x_{t-s} } \right) } \right) ^{2}}\left( {-\left( {1-y_{t-s} } \right) } \right) =\left( {1-y_{t-s} } \right) ^{2}\cdot \\ \frac{\partial ^{2}f_t \left( {x_1 ,...,x_t ,y_1 ,...,y_t } \right) }{\partial \left( {\left( {1-y_{t-s} } \right) \left( {1-x_{t-s} } \right) } \right) ^{2}} \\ \end{array} \end{aligned}$$
(14)

for any \(x_1 ,y_1 ,...,x_t ,y_t \in \left[ {0,1} \right] \), so Lemma 2 has been proved, since \(\left( {1-y_{t-s} } \right) ^{2}\ge 0\). \(\square \)

Remark 5.2

\(\frac{\partial ^{2}f_\tau \left( {x_1 ,...,x_\tau ,y_1 ,...,y_\tau } \right) }{\partial x_\tau ^2 }=0\) for any \(x_1 ,y_1 ,...,x_\tau ,y_\tau \in \left[ {0,1} \right] \) (\(\tau =1,...,T)\), since \(f_\tau \) is linear in \(x_\tau \), so \(\frac{\partial ^{2}f_\tau \left( {x_1 ,...,x_\tau ,y_1 ,...,y_\tau } \right) }{\partial x_\upsilon ^2 }\ge 0\) for any \(x_1 ,y_1 ,...,x_\tau ,y_\tau \in \left[ {0,1} \right] \) (\(\tau =1,...,T\); \(\upsilon =1,...,\tau )\) if the condition of Lemma 2 is satisfied.

Corollary 1

From Lemma 2 and Remark 5.2, it follows that \(f_{\omega +1} +...+f_T \) is convex with respect to \(x_\omega \) (\(\omega =1,...,T-1)\) (for any \(x_1 ,y_1 ,...,x_T ,y_T \in \left[ {0,1} \right] )\) if the condition of Lemma 2 is satisfied.

Remark 5.3

It can be similarly shown that \(g_{\omega +1} +...+g_T \) is convex with respect to \(x_\omega \) and \(y_\omega \) (\(\omega =1,...,T-1)\) (for any \(x_1 ,y_1 ,...,x_T ,y_T \in \left[ {0,1} \right] )\) if \(\frac{\partial ^{2}g_t \left( {x_1 ,...,x_t ,y_1 ,...,y_t } \right) }{\partial \left( {\left( {1-y_{t-s} } \right) \left( {1-x_{t-s} } \right) } \right) ^{2}}\ge 0\) (\(t=2,...,T\), \(s=1,...,t-1)\) for function (4) in the game of Sect. 3.

Lemma 3

Consider the game defined in Sect. 3. It can be stated that F gains not less final payoff with delaying any consumption from step v (\(v=1,...,T-1)\) to step w (\(w=2,...,T\), v < w) if it may occur for v that \(\alpha -\pi \left[ \cdot \right] \ge q\left( {\gamma _v -\pi \left[ \cdot \right] } \right) \) (that is if \(\alpha -\pi \left[ R \right] \ge q\left( {\gamma _v -\pi \left[ R \right] } \right) )\) and it holds for w that \(\alpha -\pi \left[ R \right] \le q\left( {\gamma _w -\pi \left[ R \right] } \right) \) (supposing that L does not consume at steps from (v+1) to w).

Proof

It is surely more advantageous for F to consume the resource to be consumed at step v (as well) later at step w because of the following: Suppose indirectly that F would get higher final payoff if he consumed the amount \(r_v \) at step v and the amount \(r_w \) at step w than in case of consuming all \(r_v +r_w \) at step w, that is: \(q\left( {\gamma _v -\pi \left[ r \right] } \right) r_v +q\left( {\gamma _w -\pi \left[ {r-r_v } \right] } \right) r_w >q\left( {\gamma _w -\pi \left[ r \right] } \right) \left( {r_v +r_w } \right) \). (r is the resource remaining from R at step v.)

It follows that \(q\left( {\gamma _v -\pi \left[ r \right] } \right) r_v >q\left( {\gamma _w -\pi \left[ r \right] } \right) r_v \). This is a contradiction, since \(q\left( {\gamma _v -\pi \left[ R \right] } \right) \le \alpha -\pi \left[ R \right] \le q\left( {\gamma _w -\pi \left[ R \right] } \right) \Rightarrow q\left( {\gamma _v -\pi \left[ r \right] } \right) \le q\left( {\gamma _w -\pi \left[ r \right] } \right) \), which follows from the fact that function \(q\left( {\gamma _v -\pi \left[ \cdot \right] } \right) \) and \(q\left( {\gamma _w -\pi \left[ \cdot \right] } \right) \) differ only by a constant, so the relative position of their values is fixed. Thus Lemma 3 has been proved. \(\square \)

Lemma 4

Let us consider the game defined in Sect. 3. It can be stated that L gains higher final payoff with delaying any consumption for as long as possible (if F does not consume meanwhile).

Proof

Keeping the notation of Lemma 3, it holds that

$$\begin{aligned} \left( {\alpha -\pi \left[ r \right] } \right) r_v +\left( {\alpha -\pi \left[ {r-r_v } \right] } \right) r_w \le \left( {\alpha -\pi \left[ r \right] } \right) r_v +\left( {\alpha -\pi \left[ r \right] } \right) r_w =\left( {\alpha -\pi \left[ r \right] } \right) \left( {r_v +r_w } \right) ,\nonumber \\ \end{aligned}$$
(15)

from which Lemma 4 follows. \(\square \)

Lemma 5

(Pardalos et al 1995) Consider the deterministic two-player discrete-time leader-follower game in Definition 1 with the following: the game has only one step, \(X_1 \subset \mathbf{R}^{m}\) and \(Y_1 \subset \mathbf{R}^{n}\) are compact sets (\(m,n\in \mathbf{N})\) and \(F,G\in C\left[ {X_1 \times Y_1 } \right] \). Then there is a leader-follower equilibrium of the game. \(\square \)

Lemma 6

(Kuhn and Tucker 1953) Consider the deterministic two-player discrete-time leader-follower game in Definition 1 with finite strategy sets. Then there is a leader-follower equilibrium of the game.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kicsiny, R. Solution for a class of closed-loop leader-follower games with convexity conditions on the payoffs. Ann Oper Res 253, 405–429 (2017). https://doi.org/10.1007/s10479-016-2327-9

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10479-016-2327-9

Keywords

Navigation