Skip to main content
Log in

A supernodal formulation of vertex colouring with applications in course timetabling

  • Published:
Annals of Operations Research Aims and scope Submit manuscript

Abstract

For many problems in scheduling and timetabling, the choice of a mathematical programming formulation is determined by the formulation of the graph colouring component. This paper briefly surveys seven known integer programming formulations of vertex colouring and introduces a new approach using “supernodes”.

In the definition of George and McIntyre (SIAM J. Numer. Anal. 15(1):90–112, 1978), a “supernode” is a complete subgraph, within which every pair of vertices have the same neighbourhood outside of the subgraph. A polynomial-time algorithm for obtaining the best possible partition of an arbitrary graph into supernodes is given. This makes it possible to use any formulation of vertex multicolouring to encode vertex colouring. Results of empirical tests on benchmark instances in graph colouring (DIMACS) and timetabling (Udine Course Timetabling) are also provided and discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Aardal, K. I., Hoesel, S. P. M., van Koster, A. M. C. A., & Mannino, C. (2007). Models and solution techniques for frequency assignment problems. Annals of Operation Research, 153, 79–129.

    Article  Google Scholar 

  • Achlioptas, D., & Naor, A. (2005). The two possible values of the chromatic number of a random graph. Annals of Mathematics, 163(3), 1333–1349.

    Google Scholar 

  • Achterberg, T. (2007). Constraint integer programming. Unpublished doctoral dissertation, Berlin.

  • Appa, G., Magos, D., & Mourtos, I. (2005). On the system of two all_different predicates. Information Processing Letters, 94(3), 99–105.

    Article  Google Scholar 

  • Avella, P., & Vasil’ev, I. (2005). A computational study of a cutting plane algorithm for university course timetabling. Journal of Scheduling, 8(6), 497–514.

    Article  Google Scholar 

  • Barbosa, V. C., & Szwarcfiter, J. L. (1999). Generating all the acyclic orientations of an undirected graph. Information Processing Letters, 72, 71–74.

    Article  Google Scholar 

  • Barbosa, V. C., Assis, C. A. G., & Nascimento, J. O. do. (2004). Two novel evolutionary formulations of the graph coloring problem. Journal of Combinatorial Optimization, 8(1), 41–63.

    Article  Google Scholar 

  • Beyrouthy, C. B., Burke, E. K., Silva, D. L., McCollum, B., McMullan, P., & Parkes, A. J. (2008). Towards improving the utilisation of university teaching space. Journal of the Operational Research Society, 60(1), 130–143.

    Article  Google Scholar 

  • Bollobás, B. (2001). Random graphs. Cambridge: Cambridge University Press.

    Google Scholar 

  • Burke, E. K., & Petrovic, S. (2002). Recent research directions in automated timetabling. European Journal of Operational Research, 140(2), 266–280.

    Article  Google Scholar 

  • Burke, E. K., Werra, D., & Kingston, J. H. (2004). Applications to timetabling. In J. L. Gross & J. Yellen (Eds.), Handbook of graph theory (pp. 445–474). Boca Raton: CRC Press.

    Google Scholar 

  • Burke, E. K., Mareček, J., Parkes, A. J., & Rudová, H. (2008). Penalising patterns in timetables: novel integer programming formulations. In S. Nickel & J. Kalcsics (Eds.), Operations research proceedings 2007 (pp. 409–414). Berlin: Springer.

    Chapter  Google Scholar 

  • Campêlo, M., Corrêa, R. C., & Frota, Y. (2003). Cliques, holes and the vertex coloring polytope. Information Processing Letters, 89(4), 159–164.

    Article  Google Scholar 

  • Campêlo, M., Campos, V. A., & Corrêa, R. C. (2008). On the asymmetric representatives formulation for the vertex coloring problem. Discrete Applied Mathematics, 156(7), 1097–1111.

    Article  Google Scholar 

  • Campêlo, M., Campos, V. A., & Corrêa, R. C. (2009). Um algoritmo de planos-de-corte para o número cromático fracionário de um grafo. Pesquisa Operacional, 29(1), 179–193.

    Article  Google Scholar 

  • Caprara, A. (1998). Properties of some ilp formulations of a class of partitioning problems. Discrete Applied Mathematics, 87(1–3), 11–23.

    Article  Google Scholar 

  • Carter, M. W., & Laporte, G. (1997). Recent developments in practical course timetabling. In E. K. Burke & M. W. Carter (Eds.), LNCS: Vol. 1408. Practice and theory of automated timetabling (pp. 3–19). Berlin: Springer.

    Chapter  Google Scholar 

  • Catanzaro, D., Godi, A., & Labbé, M. (2008). A class representative model for pure parsimony haplotyping (Tech. Rep. Nos. Dated October 29, 2008). Bruxelles, Belgium: Université Libre de Bruxelles.

  • Chudnovsky, M., Robertson, N., Seymour, P., & Thomas, R. (2006). The strong perfect graph theorem. Annals of Mathematics, 164(1), 51–229.

    Article  Google Scholar 

  • Coll, P., Marenco, J., Méndez-Díaz, I., & Zabala, P. (2002). Facets of the graph coloring polytope. Annals of Operation Research, 116, 79–90.

    Article  Google Scholar 

  • Crescenzi, P., Kann, V., Halldórsson, M., Karpinski, M., & Woeginger, G. (2005). A compendium of NP optimization problems (Available on-line).

  • Cunningham, W. H., & Edmonds, J. (1980). A combinatorial decomposition theory. Canadian Journal of Mathematics, 32(3), 734–765.

    Google Scholar 

  • Duff, I. S., & Reid, J. K. (1983). The multifrontal solution of indefinite sparse symmetric linear. ACM Transactions on Mathematical Software, 9(3), 302–325.

    Article  Google Scholar 

  • Eisenstat, S. C., Elman, H. C., Schultz, M. H., & Sherman, A. H. (1984). The (new) yale sparse matrix package. In Elliptic problem solvers, II (Monterey, Calif., 1983), (pp. 45–52). San Diego: Academic Press.

    Google Scholar 

  • Feige, U., & Kilian, J. (1998). Zero knowledge and the chromatic number. Journal of Computer and System Science, 57(2), 187–199.

    Article  Google Scholar 

  • Galinier, P., & Hertz, A. (2006). A survey of local search methods for graph coloring. Computers & Operations Research, 33(9), 2547–2562.

    Article  Google Scholar 

  • Gallai, T. (1967). Transitiv orientierbare Graphen. Acta Mathematica Academiae Scientiarum Hungar, 18, 25–66.

    Article  Google Scholar 

  • Gallai, T. (1968). On directed paths and circuits. In P. Erdös & G. Katobna (Eds.), Theory of graphs (pp. 115–118). San Diego: Academic Press.

    Google Scholar 

  • Garey, M. R., & Johnson, D. S. (1976). The complexity of near-optimal graph coloring. Journal of the ACM, 23(1), 43–49.

    Article  Google Scholar 

  • Gaspero, L. D., & Schaerf, A. (2003). Multi neighborhood local search with application to the course timetabling problem. In E. K. Burke & P. D. Causmaecker (Eds.), LNCS: Vol. 2740. Practice and theory of automated timetabling (pp. 262–275). Berlin: Springer.

    Google Scholar 

  • Gaspero, L. D., & Schaerf, A. (2006). Neighborhood portfolio approach for local search applied to timetabling problems. Journal of Mathematical Modelling and Algorithms, 5(1), 65–89.

    Article  Google Scholar 

  • Gebremedhin, A. H., Manne, F., & Pothen, A. (2005). What color is your Jacobian? Graph coloring for computing derivatives. SIAM Review, 47(4), 629–705.

    Article  Google Scholar 

  • George, A., & McIntyre, D. R. (1978). On the application of the minimum degree algorithm to finite element systems. SIAM Journal of Numerical Analysis, 15(1), 90–112.

    Article  Google Scholar 

  • Golumbic, M. C. (1977). The complexity of comparability graph recognition and coloring. Computing, 18(3), 199–208.

    Article  Google Scholar 

  • Gross, J. L., & Yellen, J. (2004). Handbook of graph theory. Boca Raton: CRC Press.

    Google Scholar 

  • Habib, M., & Maurer, M. C. (1979). On the X-join decomposition for undirected graphs. Discrete Applied Mathematics, 1(3), 201–207.

    Article  Google Scholar 

  • Hansen, P., Labbé, M., & Schindl, D. (2005). Set covering and packing formulations of graph coloring: algorithms and first polyhedral results (Tech. Rep. No. G-2005-76). Montreal, Canada: GERAD.

  • Johnson, D. J., & Trick, M. A. (1996). Cliques, coloring, and satisfiability: Second DIMACS implementation challenge, Workshop, October 11–13, 1993. Providence: American Mathematical Society.

    Google Scholar 

  • Kaibel, V., & Margot, F. (2007). Personal communication at MIP Workshop 2007 in Montreal, Canada.

  • Kaibel, V., & Pfetsch, M. (2008). Packing and partitioning orbitopes. Mathematical Programming, 114(1), 1–36. doi:10.1007/s10107-006-0081-5.

    Article  Google Scholar 

  • Kaibel, V., Peinhardt, M., & Pfetsch, M. E. (2007). Orbitopal fixing. In M. Fischetti & D. P. Williamson (Eds.), LNCS: Vol. 4513. Integer programming and combinatorial optimization (pp. 74–88). New York: Springer.

    Chapter  Google Scholar 

  • Karp, R. M. (1972). Reducibility among combinatorial problems. In R. E. Miller & J. W. Thatcher (Eds.), Complexity of computer computations (pp. 85–103). New York: Plenum.

    Google Scholar 

  • Kiaer, L., & Yellen, J. (1992). Weighted graphs and university course timetabling. Computers Operations Research, 19(1), 59–67.

    Article  Google Scholar 

  • Koch, T. (2004). Rapid mathematical programming. Unpublished doctoral dissertation, Berlin (ZIB Technical Report TR-04-58).

  • Krajíček, J. (1997). Interpolation theorems, lower bounds for proof systems, and independence results for bounded arithmetic. Journal of Symbolic Logic, 62(2), 457–486.

    Article  Google Scholar 

  • Lee, J. (2002). All-different polytopes. Journal of Combinatorial Optimization, 6(3), 335–352.

    Article  Google Scholar 

  • Lee, J., & Margot, F. (2007). On a binary-encoded ILP coloring formulation. INFORMS Journal of Computing, 19(3), 406–415.

    Article  Google Scholar 

  • Margot, F. (2002). Pruning by isomorphism in branch-and-cut. Mathematical Programming, 94, 71–90.

    Article  Google Scholar 

  • Margot, F. (2003). Exploiting orbits in symmetric ILP. Mathematical Programming, 98, 3–31.

    Article  Google Scholar 

  • Margot, F.: (2007). Symmetric ILP: Coloring and small integers. Discrete Optimization, 4, 40–62.

    Article  Google Scholar 

  • Mehrotra, A., & Trick, M. A. (1996). A column generation approach for graph coloring. INFORMS Journal of Computing, 8(4), 344–354.

    Article  Google Scholar 

  • Méndez-Díaz, I., & Zabala, P. (2008). A cutting plane algorithm for graph coloring. Discrete Applied Mathematics, 156, 2.

    Google Scholar 

  • Möhring, R. H., & Radermacher, F. J. (1984). Substitution decomposition for discrete structures and connections with combinatorial optimization. In Algebraic and combinatorial methods in operations research (Vol. 95, pp. 257–355). Amsterdam: North-Holland.

    Chapter  Google Scholar 

  • Muller, J. H., & Spinrad, J. (1989). Incremental modular decomposition. Journal of the ACM, 36(1), 1–19.

    Article  Google Scholar 

  • Murray, K., Müller, T., & Rudová, H. (2007). Modeling and solution of a complex university course timetabling problem. In E. K. Burke & H. Rudová (Eds.), LNCS: Vol. 3867. Practice and theory of automated timetabling (pp. 193–213). Berlin: Springer.

    Chapter  Google Scholar 

  • Nešetřil, J., & Tardif, C. (2008). A dualistic approach to bounding the chromatic number of a graph. European Journal of Combinatorics, 29(1), 254–260.

    Article  Google Scholar 

  • Ostrowski, J., Linderoth, J., Rossi, F., & Smriglio, S. (2007). Orbital branching. In M. Fischetti & D. P. Williamson (Eds.), LNCS: Vol. 4513. Integer programming and combinatorial optimization (pp. 104–118). New York: Springer.

    Chapter  Google Scholar 

  • Petrovic, S., & Burke, E. K. (2004). University timetabling. In J. Leung (Ed.), Handbook of scheduling: Algorithms, models, and performance analysis (pp. 1001–1023). Boca Raton: CRC Press.

    Google Scholar 

  • Prestwich, S. D. (2003). In E. Giunchiglia & A. Tacchella (Eds.), LNCS: Vol. 2919. Theory and applications of satisfiability testing (pp. 105–119). Berlin: Springer.

    Chapter  Google Scholar 

  • Roy, B. (1967). Nombre chromatique et plus longs chemins d’un graph. Revue AFIRO, 1, 127–132.

    Google Scholar 

  • Rudová, H., & Murray, K. (2003). University course timetabling with soft constraints. In E. K. Burke & P. D. Causmaecker (Eds.), LNCS: Vol. 2740. Practice and theory of automated timetabling (pp. 310–328). Berlin: Springer.

    Google Scholar 

  • Sabidussi, G. (1961). Graph derivatives. Mathematische Zeitschrift, 76, 385–401.

    Article  Google Scholar 

  • Schaerf, A. (1999). A survey of automated timetabling. Artificial Intelligence Review, 13(2), 87–127.

    Article  Google Scholar 

  • Schimmelpfeng, K., & Helber, S. (2007). Application of a real-world university-course timetabling model solved by integer programming. OR Spectrum, 29, 783–803.

    Article  Google Scholar 

  • Schindl, D. (2004). Some combinatorial optimization problems in graphs with applications in telecommunications and tomography. Unpublished doctoral dissertation, Lausanne.

  • Shapley, L. (1967). On committees. In New methods of thought and procedure (pp. 246–270). Berlin: Springer.

    Google Scholar 

  • Springer, D. L., & Thomas, D. E. (1994). Exploiting the special structure of conflict and compatibility graphs in high-level synthesis. IEEE Transactions on CAD of Integrated Circuits and Systems, 13(7), 843–856.

    Article  Google Scholar 

  • Vitaver, L. M. (1962). Determination of minimal coloring of vertices of a graph by means of boolean powers of the incidence matrix. Doklady Akademii Nauk SSSR, 147, 758–759.

    Google Scholar 

  • de Werra, D., & Hansen, P. (2003). Using stable sets to bound the chromatic number. Information Processing Letters, 87(3), 127–131.

    Article  Google Scholar 

  • Williams, H. P., & Yan, H. (2001). Representations of the all_different predicate of constraint satisfaction in integer programming. INFORMS Journal of Computing, 13(2), 96–103.

    Article  Google Scholar 

  • Zabala, P., & Méndez-Díaz, I. (2006). A branch-and-cut algorithm for graph coloring. Discrete Applied Mathematics, 154(5), 826–847.

    Article  Google Scholar 

  • Zuckerman, D. (2007). Linear degree extractors and the inapproximability of max clique and chromatic number. Theory of Computing, 3(6), 103–128.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jakub Mareček.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Burke, E.K., Mareček, J., Parkes, A.J. et al. A supernodal formulation of vertex colouring with applications in course timetabling. Ann Oper Res 179, 105–130 (2010). https://doi.org/10.1007/s10479-010-0716-z

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10479-010-0716-z

Keywords

Navigation